1 Now, Why do we want to learn Quantum Mechanics

• Quantum mechanics is a mathematical theory that can be used to predict chemical properties.

• But this fact has been known since the 1920s, so what’s new?

• Today with better computational methods and faster computers, one is able to study systems of interest to chemistry.

• With accurate quantum mechanical calculations, one can calculate properties for systems that are difficult to isolate experimentally. This may result in a quantitative understanding of transition states, prediction alternate reaction pathways, and sometimes prediction of new chemical concepts!!

• A brief search on web of science shows an exponential growth in the number of articles that pertain to the utilization and development of quantum chemical tools:

• Quantum chemistry is well on its way towards becoming an established chemical analysis and predictive tool.
2 The Stern-Gerlach experiments

Two ways of learning Quantum Mechanics:

1. historical perspective: experimental findings between 1905 to 1922

2. concentrate on one of these experiments: the need for a “new physics”

We will do the latter. We choose the Stern-Gerlach experiments to demonstrate to us the need for a “new” physical theory to explain important concepts.

1. Silver atoms are heated in an oven that has a small hole through which some atoms escape.

![Figure 1: The Stern-Gerlach experimental setup.](image)

2. The atoms go through a region that contains a magnetic field as seen in the figure. What happens?
3. To understand what happens let us analyze the silver atoms.

- The atomic number for silver is 47.
- So it has 46 electrons that are paired (i.e. upspin-downspin partners) and there is one electron that is unpaired.
- Classical theory of magnetism: a “spinning electron” behaves as a magnet and the heavy silver atom has a magnetic moment due to the one extra (unpaired) 47th electron. So each silver atom is like a tiny magnet due to that extra, unpaired electron.

![Figure 2: The current carrying copper wire in the above figure creates a magnetic field in the metallic nail.](image)

- Any magnet that is placed in a magnetic field, experiences a force due to the magnetic field which bends its path.
- Hence each silver atom that escapes from the oven into the region of the magnetic field experiences a force that bends its path.

4. Which way do the paths bend for a given silver atom?
5. To explain this, a little understanding of magnetism helps:

- **Force on the silver atom that drags it along the direction of the magnetic field** is proportional to the magnetic moment of the silver atom.

\[
F_{z} = \frac{\partial}{\partial z} (\mu \cdot B) = \mu_{z} \frac{\partial B_{z}}{\partial z} \tag{2.1}
\]

- **Vector algebra? → review handout in Section A. Note:** Section A will not be discussed in class. You are responsible for the material, but please see us if you have trouble.

- The equation above implies there is a force on the silver atom due to its magnetic moment. This force is along \(z \) (the direction of the magnetic field).

- **And proportional to the component of the magnetic moment along the direction of the magnetic field** (\(\mu_{z} \)).

- The magnetic moment of the silver atom is proportional to the spin of the extra electron

\[
\mu \propto S \tag{2.2}
\]

- Hence the force on each silver atom (which drags the silver atom and bends its path) is proportional to the spin component of the extra electron along the \(z \)-axis direction.

\[
F_{z} \propto S_{z}, \tag{2.3}
\]

\[
F_{z} = C S_{z} \tag{2.4}
\]

where \(C \) is some constant.
6. So what does all this mean? The component of the spin of the extra electron on the silver atom along the z-axis direction (that is the direction of the magnetic field) determines the force on the silver atoms!!!
7. But the silver atoms are rolling and tumbling around freely inside the oven.

8. Does this mean their spins can be aligned along any direction as they tumble and roll? Perhaps so. (*We will find out soon!*)

9. If the spin can be aligned along any direction the spin component along the *z*-axis can be *any number* between +S and -S.

10. Hence the force acting along the *z*-direction on the silver atom can have any value between +CS and -CS.

11. Which means the silver atoms can bend on either sides up to some maximum value. The amount it bends is proportional to the force acting on it.

12. We already saw earlier that we expect the spins to be oriented randomly as the silver atoms roll and tumble.

13. *Hence on the detector there should be a continuous distribution of silver atoms as shown in the figure*

14. **Is this what Stern and Gerlach really observed?** No !!!!!!! What did they see?
15. They saw just two spots like what we have in the figure below.

![Screen](image)

16. What's wrong? Why did they see just two spots.

17. Something has got to be wrong in the “classical” thinking that we exhibited above.

18. How can we reconcile two spots on the detector, instead of one continuous spot?
19. The spin of the silver atoms, along the z-direction, cannot be random. This is the only possible explanation for what Stern and Gerlach saw.

20. S_z has to be quantized and not continuous and can have only two values:

$$S_z = \pm \hbar/2$$ \hspace{1cm} (2.5)

where \hbar is a constant number derived by Planck and known as the Planck’s constant. \hbar is a simplified notation of $h/2\pi$.

This was quite a surprising result at the time when classical mechanics and classical theory of electro-magnetics were considered complete. However, this was not the only experiment that exposed the limitation of the classical style of thinking. There were others: Planck’s black body radiation and the Einstein-debye theory of specific heats to name a couple. We have chosen to concentrate here only on the Stern-Gerlach so as to quickly expose the short-comings. What we have arrived at above is known as **spin quantization**, a very important concept in quantum mechanics. *Spin is quantized not continuous.*

21. As to why exactly spin has to be quantized we will see further down when we construct an analogy between the Stern-Gerlach experiments and polarized light. But, for now, let's proceed further to other even more surprising facts.
2.1 Sequential Stern-Gerlach experiments

The sequence of experiments that I consider here can be performed computationally using the java applet at: http://www.indiana.edu/~essiweb/C561/spins.jar (you will need Java). You should try this yourself and we can discuss this during the next class or if you have trouble using the applet you could see me in my office hrs.

Figure 3:

1. What happens if we choose to pass \(S_z^+ \) through a magnetic field oriented along the x-direction?

Figure 4:

2. We get the states \(S_x^+ \) and \(S_x^- \).

3. This makes sense. Although \(S_z^+ \) has a non-zero spin component along the positive z-axis, there is no definite information here regarding what the component along x-axis might be.
4. What happens when we block S_x^- and let S_x^+ go through another magnetic field oriented along the z-direction

![Diagram](attachment://image.png)

Figure 5:

5. A completely different story. *We are in for a shock.*

6. We find that both S_z^+ and S_z^- are present in the result.

![Diagram](attachment://image.png)

Figure 6:

7. How can this make any sense? We blocked off S_z^- before it entered into the x-directed magnetic field. Yet it makes its appearance after passing through the z-directed magnetic field. What's going on?

8. This last part *most drastically* illustrates the peculiarities of quantum mechanics. And it is an observed fact and a complete surprise!!
9. How is it possible that S^-_z which we completely eliminated initially has resurfaced? It almost seems as if when we passed the S^+_z state through the x-magnetic field, it forgot that it was passed through the z-magnetic field before that. Weird!

10. Is there an explanation? Yes. And we will get into that in a little bit. But it is to be clearly understood that this problem encountered between S_z and S_x is not due to incompetence in the experiment and cannot be done away with by improving the quality of the experiment or such. There is a very fundamental concept here that we will get into next.