Structural-Morphism System Property: \textit{atisEndomorphismness}

(Structural-morphism system properties are those properties that are part of the theory and define the mapping-relatedness of object-set components.)

\textbf{Endomorphismness}, \mathcal{E}, $=_{\text{df}}$ System components whose connections are transformed so that a different system state is obtained while maintaining the same components.

\[
\mathcal{E} =_{\text{df}} \mathcal{M}(\mathcal{S}_1: t(1), \mathcal{S}_1: t(2)) \mid \sigma(\mathcal{S}_1: t(1), \mathcal{S}_1: t(2)) \supset \sim (\mathcal{S}_1: t(1)) \equiv \mathcal{S}_1: t(2)
\]

\textbf{Endomorphismness} is defined as a measure of the same system at two different times; such that, there is a system transmission function from the system state at time t_1 to the system state at time t_2, implies the system states at the two times are not equivalent.

\textbf{Endomorphism} is a homomorphism that has a domain the same as its codomain, $f:A\rightarrow A$.

The following homomorphism, $f_{\text{endo}}:\mathcal{T}\rightarrow\mathcal{T}$, defines an \textit{endomorphism}:

\textbf{Object-Set} \mathcal{T} \hspace{2cm} \textbf{Object-Set} \mathcal{T}

\begin{itemize}
 \item t_1
 \item t_2
 \item t_3
 \item t_4
\end{itemize}

\begin{itemize}
 \item t_1
 \item t_2
 \item t_3
 \item t_4
\end{itemize}