Structural-Morphism System Property: *atis Isomorphismness*

(*Structural-morphism system properties* are those properties that are part of the theory and define the mapping-relatedness of object-set components.)

Isomorphismness, \(\mathcal{I} \), = df corresponding components of two systems that have the same connections.

\[
\mathcal{I} =_{df} \mathcal{M}(\mathcal{S}_1, \mathcal{S}_2) \mid \mathcal{M}(\mathcal{S}_1, \mathcal{S}_2) = \mathcal{M}(\mathcal{S}_2, \mathcal{S}_1)
\]

Isomorphismness is defined as a measure between two systems; such that, the measure from \(\mathcal{S}_1 \) to \(\mathcal{S}_2 \) is equal to the measure from \(\mathcal{S}_2 \) to \(\mathcal{S}_1 \).

Isomorphism is a homomorphism and its inverse that are *bijective functions*; that is, functions that are both *one-to-one* and *onto*.

The following homomorphism, \(f_{iso} : \mathcal{F} \rightarrow \mathcal{I} \), defines an *isomorphism*:

![Diagram showing object-sets \(\mathcal{F} \) and \(\mathcal{I} \) with corresponding components and mappings between them.](image-url)