Structural-Morphism System Property: \textit{Monomorphismness}

\textit{(Structural-morphism system properties} are those properties that are part of the theory and define the mapping-relatedness of object-set components.\textit{)}

\textbf{Monomorphismness}, $\mathcal{N} =_{df} \mathcal{M}(S_1, S_2) | \sim P(S_1, S_2) \land \forall x \in S_1 \Rightarrow \exists! y \in S_2(M(S_1, S_2))$

\textbf{Monomorphismness} is defined as a morphism between two systems; such that, for all components of the first system, there is exactly one component of the second system to which it is mapped.

\textbf{Monomorphism} is a homomorphism that is an \textit{injective function}; that is, a function that is \textit{one-to-one}.

The following homomorphism, $f_{\text{mono}}: \mathcal{F} \to \mathcal{I}$, defines a \textit{monomorphism}: