Structural System Property: \(\text{atisStoreputness} \)

(Structural system properties are those properties that are part of the theory and describe patterns of system and negasystem connectedness or partitions.)

Storeputness, \(S_p(\mathcal{S}) \), =df Partition of system components transmitted from input for which system fromput control qualifiers are “false.”

\[
S_p = \{ x \mid x \in S_0 \land \exists P(x) \in F_p \Rightarrow \exists \sigma[f(x_{S_p})(F_p \times F_p \times \mathcal{C}_p) = \perp \land \sigma(x_p \in I_p) = x_{S_p}] \}.
\]

Storeputness is defined as the resulting transmission of input components and there exists fromput control qualifiers such that there is a function of the product of fromput and fromput control qualifiers that are “false,” and there is a transmission function from input components to storeput components.

\[M: \text{ Storeputness measure, } M(S_p(\mathcal{S})), = \text{Df a measure of storeput components.} \]

1. \[M(S_p(\mathcal{S})) = \text{Df} \mid S_p(\mathcal{S}) \mid \] (1)

2. \[M(S_p(\mathcal{S})) = \text{Df} \log_2(\mid S_p(\mathcal{S}) \mid) \div \log_2(\mid S_0 \mid) \] (2)

The choice of measure will depend on the application. Measure (1) is of value where the size of the storeput set is required for comparison, say, to the input set; that is, a comparison of actual feedstore is desired. Measure (2) is of value where a comparison to the system or between systems is desired that relates the amount of storeput as a fraction or percentage of the total system.