**Structural System Property:** \( \text{atis Toputness} \)

*(Structural system properties are those properties that are part of the theory and describe patterns of system and negasystem connectedness or partitions.)*

\( \text{Toputness}, \mathcal{T}_p(\mathcal{S}), =_{df} \text{Partition of negasystem components for which system toput control qualifiers are “true.”} \)

\[ \mathcal{T}_p(\mathcal{S}) = {\{x \mid x \in \mathcal{S}'_0 \land \exists P(x) \in \mathcal{T}_p \land \mathcal{L} [f(x)(\mathcal{T}_p \times \mathcal{T}_p \land \mathcal{L}) = \tau]\}}. \]

\( \text{Toputness} \) is defined as the set of negasystem components and there exist toput control qualifiers such that there is a function from the product of the toput components and toput control qualifiers that is “true.”

\[ \mathcal{M}: \text{Toputness measure}, \mathcal{M}(\mathcal{T}_p(\mathcal{S})), =_{df} \text{a measure of toput components.} \]

\[ \mathcal{M}(\mathcal{T}_p(\mathcal{S})) =_{df} |\mathcal{T}_p(\mathcal{S})| \]  \hspace{1cm} (1)

\[ \mathcal{M}(\mathcal{T}_p(\mathcal{S})) =_{df} \log_2(|\mathcal{T}_p(\mathcal{S})|) \div \log_2(|\mathcal{S}_0|) \]  \hspace{1cm} (2)

The choice of measure will depend on the application. Measure (1) is of value where the size of the toput set is required for comparison, say, to the input set; that is, a comparison of actual feeding is desired. Measure (2) is of value where a comparison to the system or between systems is desired that relates the amount of toput as a fraction or percentage of the total system.