An Exploration of the Robustness of Alternative Laboratory Methodologies: Matching Funds and the Provision of Public Goods

Ronald J. Baker II⁠†

Department of Economics
Millersville University of Pennsylvania
PO Box 1002
Millersville, PA 17551
Phone: 1-717-872-3560
Fax: 1-717-871-2326
(ronald.baker@millersville.edu)

James M. Walker⁠b

Department of Economics
Indiana University – Bloomington
105 Wylie Hall
Bloomington, IN 47405
(walkerj@indiana.edu)

Arlington W. Williams⁠b

Department of Economics
Indiana University – Bloomington
105 Wylie Hall
Bloomington, IN 47405
(williamaha@indiana.edu)

Abstract

The voluntary provision of a pure public good is studied in the presence of an anonymous external donor. New data generated using experimental procedures employing both extra-credit and cash incentives, as well as asynchronous access to real-time decision rounds lasting several days, are compared to previous data generated using traditional cash-only, synchronous-access laboratory procedures. The effect on resource allocations to the public good of introducing external matching funds is examined in two different settings, lump-sum matching and one-to-one matching. The new data confirm the robustness of results previously reported in Baker, Walker, Williams (2009) to the change in laboratory procedures and incentives. The new data are then used to extend the parameter space in which the two matching mechanisms are studied, including: varying within-round information regarding the current level of public-good allocations and varying group size from four to twenty group members. Allocations in lump-sum matching are no worse, and sometimes better, than one-to-one matching in these new treatments.

Keywords: experiments, public goods, matching

JEL Classification: C91, H41

† Corresponding Author
1. Introduction

Laboratory experimental research on the provision of public goods has focused primarily on decision making in what is referred to as the voluntary contributions mechanism (VCM). In the most standard VCM decision setting, a group is comprised of a fixed number of individuals. Each individual is endowed with resources that can be allocated to either a private good that benefits only the individual (the private account) or to a pure public good that benefits all members of the group (the group account). The benefits are structured so that group earnings are maximized if all endowed resources are allocated to the group account. Each individual, however, has an incentive to free ride on the group-account allocations of other group members by allocating their resource endowment to the private account.

One topic addressed in the experimental public goods literature is institutional arrangements that reduce collective action problems by creating incentives that facilitate cooperation. The research reported here examines voluntary contributions to a public good in the presence of an external source of resources that are used for matching the contributions of group members. Two matching settings are examined. In the first, referred to as lump-sum matching, a publicly announced fixed level of resources from the external source flow to the group account only if the internal contributions of group members reach or exceed a pre-announced threshold level. In the second, referred to as one-to-one matching, each resource unit contributed to the group account is matched by the external source up to a publicly announced maximum level. Undertaking a controlled laboratory comparison of these alternative matching-fund settings is motivated by the observation that both arrangements are commonplace in fund drives for the provision of public goods in field settings (e.g. public radio fund drives).^{1}

These changes in experimental settings can be thought of in the following way. Assume a public good is to be partially funded through voluntary contributions. Further assume that the fund drive organizers have prior funding commitments that can be used for matching other potential donors’ contributions. From the perspective of agencies receiving contributions, the strategic question is what type of institution makes best use of the matching funds. As discussed below, in the standard VCM

^{1} See List [5], and other articles in a special issue of Experimental Economics that is devoted to field experiments focusing on charitable giving.
environment matching funds create incentives where equilibrium strategies exist that imply non-zero provision of the public good.

The free-rider problem is particularly relevant for charitable giving, volunteerism, and other forms of philanthropy. While some of these activities can no doubt be rationalized as privately optimal, and in this respect no different from other economic activities, a significant amount of these activities entails personal sacrifices in order to improve social outcomes. Experimental research is informative about the origin of such behaviors and their maintenance within social groups, since experiment participants experience similar incentives, albeit in a more abstract setting. By focusing on such a setting, the effect of economic incentives per se is investigated and comparisons are made that control for other factors that may affect behavior. In this context, the research reported here studies the role of alternative philanthropic institutions for promoting charitable contributions and explores how such institutions affect individual incentives, behavior, and resulting group outcomes relative to a known socially optimal outcome that maximizes the group’s monetary earnings.²

This study builds on Baker et al. [1]. In that study laboratory experiments are used to examine the voluntary provision of a pure public good in the presence of an anonymous external donor. The external funds are used in two different settings, lump-sum matching and one-to-one matching, to examine how allocations to the public good are affected. The results reveal that allocations to the public good under lump-sum matching are significantly higher, and have significantly lower within-group dispersion, relative to one-to-one matching and two baseline settings without external matching funds. In addition, a comparison of two baseline conditions reveals a positive framing effect on public goods allocations when it is explicitly revealed to participants that an outside source has made an unconditional allocation to the public good. The experiments reported in this study are designed to examine the robustness of the results reported in Baker et al. [1] as well as broadening the parameter space in which the two matching mechanisms are studied. The experiments incorporate the methodology developed by Isaac et al. [6,7], where there are three important procedural modifications relative to traditional laboratory experiments (where participants arrive at the lab, the relevant behavior data are collected, and

² See Baker et al. [1] for a discussion of related studies.
participants depart after receiving a cash payment at the session’s conclusion): 1) decision-making rounds last several, typically 3.5, days rather than a few minutes, 2) participation is via any networked computer at any time during a multi-day decision round, and 3) course extra-credit rewards, based on both participation and performance, are utilized in addition to the possibility of a performance-based cash payment.

The paper is organized as follows. Section 2 provides details of the experimental procedures and design. Section 3 presents experimental results, and Section 4 contains a summary of conclusions.

2. Decision Settings, Procedures, and Design Summary

2.1. The Decision Settings

All experimental sessions utilized a variation of the VCM framework of Isaac et al. [6], henceforth referred to as the standard VCM setting. Individuals made decisions in fixed groups of size N. At the start of each round, individual i was endowed with Z_i tokens which were then allocated by i between a private account, earning a constant return of p_i per token, and a group account, earning a return based upon the total number of tokens allocated by the group. Tokens could not be carried across rounds. For a given round, let m_i represent individual i’s allocation of tokens to the group account and $\sum m_j$ represent the sum of tokens placed in the group account by all other individuals ($j \neq i$). Each individual earned $[G(m_i + \sum m_j)]/N$ cents from the group account. Because each individual received a $1/N$ share of the total earnings from the group account, the group account was a pure public good. At the end of each round, decision makers were informed of their group’s allocation to the group account, as well as their earnings for that round. Decision makers were not informed of the individual decisions of other group members.

Most of the decision-making groups were comprised of $N = 4$ individuals with per-round token endowments of $Z = 25$. In addition, in the results section below, an initial exploration of group-size effects will be reported using twenty-person groups. For groups where $N=4$, the return from each individual’s private account was one cent per token, and a four-person group’s return from a token placed in the group account was $G'(\cdot) = 2.4$ cents. The marginal per-capita return from the group account
(MPCR) is the ratio of private monetary benefits to private monetary costs for moving one token from the private account to the group account. Thus, MPCR=0.6 in this case. In addition, experimental sessions varied the information decision makers received within rounds regarding allocations to the group account. In the no-information condition, decision makers received no within-round information regarding other group members’ decisions. In the information condition, decision makers were provided current information on the group’s aggregate allocation to the group account. Decision makers were informed, however, that at any time within a round group members were allowed to change their current decisions. That is, group-account allocations were not final until a round ended. How decision makers may respond to within-round information is a behavioral question. As discussed below, however, some of the decision settings allow for multiple equilibria over individual allocations to the group account. Clearly, such information may allow decision makers to better coordinate over such equilibria, in particular, symmetric equilibria. As in Isaac et al. [6] and Baker et al. [1], decision makers in all settings received end-of-round information on their group’s aggregate allocation to the group account, as well as their own payoff for the round. All settings included ten decision rounds, and this was known prior to beginning of the first round.

As discussed in previous studies, under the assumption that it is common knowledge that decision makers maximize own-earnings and play a finitely repeated game with a commonly known end point, the subgame-perfect noncooperative Nash equilibrium in this standard VCM setting is for each decision maker to allocate zero tokens to the group account. As discussed below, however, the settings that incorporate matching funds have important consequences for equilibrium predictions. Finally, note that the payoff dominant Pareto optimum in the standard VCM setting, and for all settings investigated in this study, is for decision makers to allocate all tokens to the group account.

Lump-Sum Matching In addition to the instructions for the standard VCM setting, decision makers were informed that if total allocations to the group account met or exceeded 60 tokens, the group
account would automatically have an additional 60 tokens added to it from an “external source” of tokens, with the earnings from these additional tokens being identical to those allocated by group members.\(^3\)

The lump-sum matching creates a discontinuity in the payoffs associated with the group account at the point where the decision makers meet the minimum threshold of 60 tokens. This property of the payoff function implies strategic elements to the game that lead to alternative Nash equilibria. In particular, similar to experiments with provision points, there are now multiple Nash equilibria. While all individuals allocating zero tokens to the group account remains a Nash equilibrium, the group income-maximizing Nash equilibrium is to meet the lump-sum matching threshold exactly. Thus, the symmetric Nash equilibrium is 15 tokens from each group member, but any other (asymmetric) combination of group-account allocations that exactly meet the lump-sum match threshold is also a Nash equilibrium.\(^4\)

From a noncooperative perspective, decision makers have an incentive to free ride on the allocations of others if they expect others to allocate sufficient funds to the group account to meet the lump-sum matching threshold. On the other hand, from a game-theoretic perspective, the symmetric Nash equilibrium of 15 tokens per group member may serve as a focal point for decision makers (see Marks and Croson [9]).

It is important to note a key difference between this setting and the provision-point setting. In the lump-sum setting, if allocations to the group account do not meet the minimum requirement of 60 tokens, those tokens allocated by group members are still utilized as group-account allocations and generate earnings for the group. In the provision-point environments studied to date, if group-account allocations do not meet the provision point, those tokens are either refunded to the private account or lost, depending upon the particular setting under investigation.

\(^3\) Participants were explicitly informed that the external source was a non-strategic computerized robot player whose only function was adding matching tokens, and loaded words such as “donor” or “contributor” were not used to describe the external source. Similarly, tokens were “allocated” to the group account, rather than “donated” or “contributed”. Instructions are available from the authors upon request.

\(^4\) To see this, consider the case where other group members are assumed to allocate, in aggregate, 35 tokens to the group account. Now suppose individual “i” allocates all of his/her endowment, 25 tokens, to the group account to meet the 60-token match. Individual i gains an additional $0.36 ($0.006 * 60) from the lump-sum match and loses $0.1 (($0.01-$0.006) * 25) from his/her group-account allocation of 25 tokens.
One-to-One Matching Decision makers were informed that each token allocated to the group account, up to a group maximum of 60, automatically led to an additional token being added to the group account from an external source. The group account earnings generated by each additional external token was identical to those internally allocated by the four group members.

The experiments with one-to-one matching create an increase in the marginal gain from allocations to the group account up to the maximum level of matching. With $MPCR = 0.6$, one-to-one matching implies an $MPCR$ of 1.2 for group-account allocations up to 60 tokens. This property of the payoff function implies the existence of multiple Nash equilibria. In particular, an allocation to the group account that is matched yields a marginal return to the group member above the 0.01 per-token opportunity cost. In this setting, all group members allocating zero tokens to the group account is no longer a Nash equilibrium. As with lump-sum matching, there are multiple Nash equilibria where group members’ total allocations to the group account exactly meet the maximum level of matching, and the symmetric equilibrium may serve as a focal point. From a noncooperative perspective, decision makers have an incentive to free ride if they expect others’ group-account allocations to be sufficient to extract the maximum level of matching funds.

Note that the earnings consequences of some aggregate allocations in the one-to-one setting differ substantially from those in the lump-sum setting. In particular, in both settings decision makers face the problem of coordinating who will provide the group-account allocations to be matched. The penalty, however, for not meeting the full-match threshold in the lump-sum setting is larger than in the one-to-one setting. In the lump-sum setting, the penalty is 0.36 per individual, regardless of how close the total group allocation is to the threshold. In the one-to-one setting, the penalty per individual is 0.006 for each token the group falls short of the maximum level of matching. Thus, falling a few tokens short of the threshold in the lump-sum setting has a relatively large negative effect on earnings, while an identical group-account allocation in the one-to-one setting has a much smaller effect. Focusing on this difference in the group-account earnings functions leads to the conjecture that lump-sum matching will generate greater group-account allocations than one-to-one matching. On the other hand, if group members in the one-to-one setting realize that matching results in the marginal private benefit of a token allocated to the
group account exceeding the marginal private cost (MPCR = 1.2), an alternative conjecture is that the one-to-one setting will lead to a higher level of group-account allocations. Thus, standard theoretical considerations do not yield a clear prediction as to differences across the two settings in the level of allocations to the group.

2.2. Procedures

[Table 1 here]

Participants were volunteers from undergraduate microeconomic theory classes (intermediate-level honors and non-honors sections, and introductory-level honors sections) at Indiana University-Bloomington. There were four experimental sessions, where an experimental session consisted of a semester where decision-making groups were randomly constructed using students enrolled in microeconomics classes offering optional participation in the VCM exercise. Table 1 provides a summary of the experimental design utilizing four-person groups. There are 59 decision-making groups across the four experimental sessions with ten rounds per group yielding a total of 2360 individual decisions. All students attending these classes received a handout (see Appendix) explaining the rules for participation. In summary, the handout informed students: 1) of the basic nature of the group decision-making exercise, 2) that participation is voluntary and will result in their earning extra-credit points and the possibility of performance-based cash payment, 3) of the specific formula used to convert the cash earnings reported to them by the computer into extra-credit points and the potential to earn a cash payment, 4) of the days associated with each of the ten decision rounds in an experimental session, 5) of the specific procedures for accessing the exercise on their personal computer or in a computing lab, and 6) that upon first accessing the exercise they will be shown an informed-consent statement approved by the Committee for the Protection of Human Subjects and must then choose whether or not to grant or deny the use of their decisions for research purposes. The following specific points describe the nonstandard “multiple-session” or “asynchronous-access” experimental procedures utilized in this research.

1. The NovaNET VCM software handles many independent decision-making groups running simultaneously. Before beginning an experimental session, the experimenter initializes a set of
parameters for each decision-making group. For example, one session might consist of several classes with a combined participation of 80 students who were then randomly assigned to four-person groups. In the research reported here, most groups were initialized with a group size of four, with a few twenty-person groups used to explore group-size effects. Each session also included groups facing different treatment conditions. After the session was completed, this design feature allowed for in-class discussion of the effects of alternative institutional arrangements in the voluntary funding of public goods.

2. Upon logging onto the computer for the first time, students are assigned to a decision-making group via a quasi-random rotation procedure unknown to the students. This reduces the probability that several acquaintances accessing round one at the same time will be assigned to the same group. As part of the initialization process, the experimenter designates each potential group as either "primary" or "secondary." All primary groups are filled before remaining students are assigned to secondary groups, the objective being to ensure a set of fully-populated primary groups since the participation rate in a voluntary exercise is uncertain. Inevitably, some students do not meet the deadline for entering their round-one decision and are thus excluded from participation in the exercise.5

3. After logging in for the first time, students work through a set of instructions at their own pace and then enter their allocation decision for round one. After entering a decision, the student exits the software but can reenter at any time to modify the decision.

4. Students are allowed to proceed to the next decision round only after the "current round" parameter is automatically advanced by the software (based on the system clock in conjunction with a length-of-round parameter specified during initialization).6 Upon logging on for subsequent rounds, students are shown the results of the previous round and then routed directly to the decision entry display

5 The research database with four-person groups includes four experimental sessions with 56, 60, 56, and 64 participants, respectively. Statistical analysis of data from fully-populated “primary” versus “secondary” groups indicates no significant difference in mean group-account allocations, so the research database includes both. Any group that is not fully populated with students is filled out with robot players that always allocate 15 tokens to the group account, and the human players are informed of this upon logging in for round 2. Groups with robot players are excluded from the research database analyzed in this paper, as are groups where any participant declined consent to allow their decisions to be used for research purposes. Less than 2% of students choose to decline consent.

6 Decision rounds lasted 3.5 days, except for a few rounds that spanned Thanksgiving or spring break and the first round, which typically lasted about one week from the time the launch handout was distributed (see Appendix).
for the current round. At this point, students have the option to review the instructions and to view the results from all prior rounds.

5. As in many field experiments, there is no guarantee that all students assigned to a group will log on and enter an allocation decision in each round. For this reason, the software allows the student to specify a default allocation decision for subsequent rounds. The default allocation for missed rounds can be changed at any time, and the procedure for handling defaults is carefully explained to students as part of the instructions. The experimental results presented in the next section suggest that the count of default decisions in a round does not significantly affect group-account allocations.

The multiple-session asynchronous-access experimental procedures outlined above represent a logical link between traditional single-session synchronous-access laboratory experiments and field experiments. In such environments, some experimental control is lost relative to a strictly controlled laboratory setting, however, the gain in feasible group sizes, the real time between allocation decisions, and the more natural communication and learning opportunities add an element of parallelism with non-experimental settings that could have important methodological and behavioral ramifications.

Extra-credit Performance Index As explained in the class handout (see Appendix), student i’s experimental dollar earnings were converted into the following "performance index" prior to being converted into extra-credit points:

\[
\frac{\text{i's Actual Earnings} - \text{i's Minimum Possible Earnings}}{\text{i's Maximum Possible Earnings} - \text{i's Minimum Possible Earnings}} \tag{1}
\]

which can range from 0 to 1 for each individual. The performance index was used so that the maximum and minimum possible extra-credit earnings did not depend upon the group assignment. At the end of the final round, a performance index was computed for each student (based on earnings in all rounds), multiplied by a predetermined maximum number of performance-based extra-credit points, and then added to the students' grade average. Students also earned participation-based extra credit determined by the number of rounds in which they logged into the exercise and entered an allocation decision. All classes from which students were drawn utilized a 100-point scale and, with minor modifications, used a standard mapping of point totals into letter grades (A=90's, B=80's, etc.). Furthermore, Indiana
University allows + and - letter grades, so a unique letter grade typically comprised a 3 to 4 point interval.\(^7\)

As discussed in Isaac et al. [6, 7], we have spent a great deal of time considering questions of practicability and fairness in the use of extra-credit points as a motivator. It is important to realize that our extra-credit experiments always have a clear pedagogical objective and become an integral part of our in-class discussions of private versus external benefits, public-goods provision, free riding, and the Nash equilibrium concept. Our research procedures were thoroughly reviewed and approved by the Indiana University Committee for the Protection of Human Subjects. On the issue of fairness, thousands of students have participated in the VCM exercise using extra-credit rewards and there have been no grade appeals in which extra credit was an issue. In fact, anonymous feedback from students on course evaluations (and from other faculty who have adopted similar exercises for purely pedagogical purposes) has been quite positive. It is perhaps worth noting that post-exercise in-class discussion tends to focus on external benefits, the potential social gains from cooperation, and philanthropy as distinct from the traditional behavioral assumptions of noncooperative game theory.

Cash Payments In addition to extra credit, participants in each experimental session had the opportunity to earn cash. After the session was concluded, the experimenters randomly drew a random permutation of numbers associated with names from the set of participants. The first student whose name was drawn earned cash equal to four times their earnings in the exercise. This random selection process continued until the total paid out was greater than or equal to $100, at which time the cash payments stopped. That is, for example, if the sixth cash payment raised total payments from, for example, $90.50 to $110.25, that student would receive their full $19.75 earnings, making the total payout $110.25. This very simple cash incentive system appeared to inject additional interest in the exercise and the presentation of payments to the lucky cash winners was an entertaining precursor to in-class discussions of the results. Whether or not this non-standard mixed reward structure significantly affects behavior in the VCM with external matching funds is an empirical issue that will be addressed in the next section as part of the presentation of experimental results.

\(^7\) The weight given to extra-credit points varied across instructors from 3\% to 1\% of the overall semester grade, half based on performance and half based on participation.
3. Results

Data generated using the multiple-session, asynchronous-access experimental procedures with extra-credit and cash rewards (henceforth denoted MSEXP) are analyzed in the following ways. First, to examine the potential behavioral effect of using MSEXP procedures, group-account allocations from MSEXP groups are compared to allocations generated using traditional single-session cash-only procedures (henceforth denoted SSEXP) reported in Baker et al. [1]. Second, the impact on group-account allocations of altering within-round information using MSEXP procedures is explored. Third, an initial evaluation of the impact on group-account allocations of a five-fold increase in group size is conducted. Finally, differences in allocations at the individual level due to the influence of the above experimental treatments are considered.

3.1. Comparison of Allocations using SSEXP vs. MSEXP Procedures

Figure 1 displays the four round-by-round time series of mean allocations to the group account for the both the one-to-one and lump-sum matching settings using either MSEXP or SSEXP procedures (with group size = 4, MPCR = 0.6, and no within-round information). In the one-to-one setting, the use of MSEXP procedures does not appear to have a significant impact on group-account allocations relative to those observed using traditional SSEXP procedures. In the lump-sum setting, however, some separation in mean group-account allocations between SSEXP and MSEXP occurs after round 4. The statistical significance of this separation is addressed below. Consistent with the results reported in Baker et al. [1] employing SSEXP procedures, allocations using MSEXP procedures tend to be higher in the lump-sum setting relative to the one-to-one setting.

Table 2a and 2b here

8 Participants in Baker et al. [1] made decisions in a three-phase experiment where the matching setting varied by phase. Only phase-one data from the SSEXP experiments reported in Baker et al. [1] are used in the comparison to the MSEXP data. There are twelve phase-one groups in both the SSEXP lump-sum setting and the SSEXP one-to-one setting.
A random-effects panel-data model estimated by GLS is used to test the observations drawn from Figure 1. The model is estimated using 530 group-level observations (24 groups in SSEXP and 29 groups in MSEX in which there was no within-round information), where tokens allocated to the group account by four-person groups (the aggregate allocation excluding external matching tokens) is the dependent variable. The independent variables are: a lump-sum matching dummy variable (LUMP), a multiple-session procedures dummy variable (MSEX), an interaction variable of lump-sum matching with the MSEX treatment (LUMPxMSEX) that allows for the matching settings to differently impact the MSEX treatment, and nine decision-round dummy variables (RNDi, i=2, 3, … ,10). Thus, the constant term provides the predicted group-account allocation for round one using the one-to-one setting and SSEXP procedures. To account for lack of independence across the ten decision rounds generated by each of the 53 four-person groups, robust standard errors are utilized where the data are clustered by these within-group observations.9 Unobserved heterogeneity associated with each of the ten experimental sessions (two using MSEX procedures and eight using SSEXP procedures) is modeled as a random-effect error component. Table 2a displays regression coefficient point estimates, clustered robust standard errors, and two-tailed significance tests of the coefficients; for presentational compactness the decision-round dummy variables are not displayed. Table 2b displays Wald tests of the effect of varying experimental procedures for a given matching setting, as well as the effect of varying the matching setting for a given experimental procedure.10

The results reported in Tables 2a and 2b confirm that changing from SSEXP to MSEX experimental procedures does not significantly impact group-account allocations. Consistent with Baker et al. [1], allocations in the lump-sum setting are significantly larger than allocations in the one-to-one setting using either SSEXP or MSEX procedures (p = 0.068, p = 0.000, respectively). Using the SSEXP procedures, predicted group-account allocations in the lump-sum setting are 16% greater than the one-to-

9 For a detailed discussion of the heteroskedasticity-robust Huber/White sandwich estimator of variance in clustered samples see, for example, Cameron and Trivedi [2], Chapter 24, Section 24.5. The specific implementation utilized here is documented in Rogers [10]. The random-effects estimator is necessary because the experimental-treatment dummy variables are round invariant, removing the possibility of using the fixed-effects estimator.

10 A Wald test is used to test linear restrictions on regression coefficients by testing whether or not the regression under the restriction fits the data significantly worse than the unrestricted regression. The Wald test statistic asymptotically follows a chi-square distribution with degrees of freedom equal to the number of restrictions placed on the coefficients. See Cameron and Trivedi [2], Chapter 7, Section 7.2.3 for details.
one setting. Using the MSEXP procedures, predicted group-account allocations in the lump-sum setting are 30% greater than in the one-to-one setting. Based on the insignificance of both the MSEXP coefficient (\(p = 0.847 \)) and a Wald test of MSEXP+LUMPxMSEXP = 0 (\(p = 0.523 \)), the null hypothesis of equal group-account allocations between SSEXP and MSEXP treatments is not rejected. This important result is consistent with the findings of Isaac et al. [6], and motivates the use of MSEXP procedures to explore further the behavioral impact of external matching funds in the VCM.

Additional documentation of the effects of moving from traditional SSEXP to MSEXP procedures are provided in Tables 2c and 2d, which show round-by-round comparisons of the median and variance of group-level allocations to the group account using either lump-sum (Table 2c) or one-to-one (Table 2d) matching. For each round in each matching setting there are 12 SSEXP observations and either 14 (lump-sum) or 15 (one-to-one) MSEXP observations. The nonparametric Mann-Whitney rank-sum statistic is used to test central-tendency equality, and the Levene statistic is used to test variance equality. The variance tests are motivated by the reduced reliance on cash incentives using MSEXP procedures and the Smith and Walker [11] finding that lower monetary incentives tend to increase the variance of decision outcomes. Tables 2c and 2d list the resulting p-value of these tests.\(^\text{11}\) Of the 20 round-by-round comparisons, only three rounds yield Mann-Whitney p-values less than 0.10. The general insignificance of the Mann-Whitney tests reinforces the panel-data regression Wald tests in Table 2b. For the Levene variance tests, only two of 20 rounds yield p-values less than 0.10. The general inability to reject either central-tendency equality or variance equality provides empirical justification for further explorations of the effects of external matching funds using MSEXP procedures.

3.2. Explorations of Experimental Treatments using MSEXP Procedures

As discussed in Section 2, in addition to the treatment conditions examined in Baker et al. [1], MSEXP experimental sessions were conducted including within-round information on aggregate tokens

\(^{11}\) Both the Mann-Whitney tests and the Levene tests assume that observations are independent across four-person groups, both across and within experimental sessions.
to the group account. Adding within-round information may facilitate the ability of participants to focus on symmetric equilibria.

[Figures 2a and 2b here]

Figure 2 displays mean allocations to the group account for each treatment condition in both the lump-sum and one-to-one settings for each decision round. As shown in Figure 2a, providing within-round information appears to decrease mean group-account allocations for all rounds in the lump-sum setting. However, Figure 2b illustrates that the change in experimental conditions does not have a clear impact on mean group-account allocations in the one-to-one setting.

[Tables 3a and 3b here]

To formally test the observations drawn from Figure 2, ordinary least-squares regression with clustered robust standard errors is utilized.\(^{12}\) The dependent variable is the total group allocation to the group account (excluding external tokens). The independent variables are: a count of the number of participants within a group that used the default allocation for that particular round (DEFAULTS), a lump-sum matching dummy variable (LUMP), a within-round information dummy variable (INFO), an interaction variable of the lump-sum setting with the INFO dummy (LUMPxINFO), and nine decision-round dummy variables (RND\(_i\), \(i=2, 3, \ldots, 10\)).\(^{13}\) Thus, in this analysis the regression constant provides the predicted group-account allocation for round 1 in the one-to-one setting and no within-round information. The results of this regression are displayed in Table 3a. Table 3b displays F-tests of the effect of varying the matching mechanism or within-round information holding the other treatment condition constant.

\(^{12}\) Similar to section 3.1, a random effects GLS regression was first utilized. However, the session-specific random effects were insignificant.

\(^{13}\) Two additional panel-data random-effects models were estimated. The results reported in Table 3 are robust to these alternative model specifications. The first model is an individual-specific random-effects model utilizing cluster-robust standard errors where allocation decisions are clustered by the forty within-group observations (4 participants x 10 rounds). The Wald tests based on this model are consistent with those shown in Table 3b using group-level data. The second model is a two-limit censored-normal (Tobit) regression model with group-level cluster-robust standard errors. This model makes strong distributional assumptions to account for observations at the fixed upper and lower boundaries of group-account allocations. Only four percent of the observations on the dependent variable (23 of 590) occur at the fixed upper boundary of 100% of tokens allocated to the group account, and zero observations occur at the lower boundary of zero. Again, the Wald tests are consistent with those reported in Table 3b.
The analysis confirms the informal observations drawn from Figure 2, and indicates that the count of default decisions using MSEX Procedures does not significantly affect group-account allocations. As revealed in the preceding subsection, group-account allocations in the no within-round information treatment are significantly greater in the lump-sum setting compared to the one-to-one setting \((p = 0.001)\). Predicted group-account allocations are 28\% larger in the lump-sum setting compared to the one-to-one setting. The F-test shown in Table 3b does not, however, yield significant differences between the lump-sum and one-to-one settings when there is within-round information \((p = 0.188)\). Further, predicted group-account allocations are larger in the one-to-one setting (56.6 tokens) than in the lump-sum setting (50.6 tokens) when subjects have access to within-round information. Thus, this result from an alternative parameterization calls to question the environmental robustness of the Baker et al. [1] conclusion that lump-sum matching is more effective than one-to-one matching in eliciting group-account allocations.

The other F-tests reveal that group-account allocations in one-to-one matching are not affected by providing additional within-round information \((p = 0.848)\); however, the marginal effect of this environmental change in lump-sum-matching is to significantly reduce group-account allocations \((p = 0.000)\). Predicted group-account allocations decrease only 1\% in the one-to-one setting when providing within-round information. However, predicted group account allocations decrease by 31\% in the lump-sum setting when this information is included.

For lump-sum matching, within-round information on tokens to the group account appears to have a disruptive effect on a group’s ability to extract the external matching funds. The explanation for this negative effect of providing within-round group-account information is subtle. It appears that, when blind to others’ aggregate group-account allocation in the current round, group members are more likely to allocate “insurance tokens” to increase the likelihood that the lump-sum threshold will be met. When group members have within-round information on others’ current aggregate allocation, this tends to eliminate the insurance-allocation motive and promotes gaming focused on exactly meeting the lump-sum threshold. Adding within-round information in the lump-sum setting results in groups exactly meeting the matching-funds threshold in 52\% of all rounds where the match is provided, compared to only 9\%
when the within-round information is not provided. This results in, on average, smaller group-account allocations and a reduced probability of reaching the matching-tokens threshold. Having within-round information reduces the average count of rounds where the matching threshold is met from 8.5 to 6.1 out of 10. This effect is significant using either a two-sample Mann-Whitney test of the count of rounds generating the lump-sum match in each group (p = 0.048, sample size = 14, 15) or a logit regression with INFO as an explanatory variable for a binary dependent variable determined by whether or not a group meets (or exceeds) the match threshold in a given round (0 when no, 1 when yes, p = 0.058 using the cluster-robust standard error, sample size = 290 = 29 clusters of 10 observations).

3.3. Examining Allocations at the Individual Level for Four-Person Groups

[Figures 3a and 3b here]

This subsection analyzes group-account allocations at the individual level organized around the frequency of occurrence of three benchmark allocations: the maximum (all 25 tokens), the symmetric Nash equilibrium (15 tokens), and complete free riding (0 tokens). Figure 3 displays the relative frequencies of these allocations across all decision rounds for the four-person groups using MSEXP procedures. In the lump-sum setting (Figure 3a), the most striking result is the relatively large observed frequency of the maximum allocation to the group account with no within-round information. This is consistent with the previously-stated conjecture that participants in this low-information environment are motivated to provide insurance tokens for meeting the 60-tokens matching threshold. Also noteworthy is how infrequently complete free riding occurs in this treatment. In the one-to-one setting (Figure 3b), the impact of providing within-round information is less striking than in the lump-sum setting. Further, free-riding occurs less often in the information environment compared to the lump-sum setting.

To examine formally the statistical significance of the visual impressions rooted in Figure 3, negative-binomial count-data regressions are performed where the dependent variable is the number of rounds (an integer between 0 and 10) that an individual submitted one of the three specified benchmark allocations. The independent variables are the LUMP and INFO dummy variables and associated

14 Similarly, for all rounds in the one-to-one setting where the full match is extracted, 36% of these rounds exactly meet the full-match extraction level in the information treatment compared to 7% in the no-information treatment.
interaction terms described at the beginning of Section 3.2. Because each individual is part of a four-person group, an individual’s token allocations are likely to be influenced by the previous allocations of other group members. To account for this within-group dependence, robust standard errors are reported where observations are clustered by decision groups. As in the previously reported regression results, the constant term provides the predicted outcome for the one-to-one setting with no within-round information on total tokens allocated to the group account.

[Tables 4, 5, and 6 here]

Tables 4, 5, and 6 display the results of the negative-binomial regressions. A convenient way to interpret the regression coefficients in the negative-binomial model is to examine incidence-rate ratios (IRR), where \(\text{IRR} = e^\beta \). IRRs reveal the percentage change in the expected count of a benchmark allocation due to a change in the treatment condition, holding all other independent variables constant. For example, in Table 4, the lump-sum setting increases the expected frequency for the maximum allocation by a multiple of 1.56 compared to the one-to-one setting, a 56% increase [i.e. 100*(IRR – 1)].

Table 4 presents the results of the negative-binomial regression using the maximum group-account allocation as the dependent variable. The results confirm that when there is no within-round information the expected frequency of maximum group-account allocations is significantly larger in the lump-sum setting than in the one-to-one setting. Expected frequencies of maximum allocations are 56% greater in the lump-sum setting (4.29 rounds to 2.75 rounds). Wald tests are used to compare the lump-sum and one-to-one treatments under the other combinations of identical information conditions. (The specific comparisons and associated null hypotheses are the same as those shown in Table 3b.) These tests yield no other significant differences in expected frequencies of maximum allocations at the 10% significance level. In the lump-sum setting, Wald tests confirm that including within-round information (\(p=0.001 \)) significantly decreases the expected frequency of maximum allocations relative to the low-information treatment. Expected frequencies of maximum allocations decrease 63% in the lump-sum

15 A Poisson regression model also provided similar coefficients to the negative binomial approach. However, the poisson results indicated that the assumption of equidispersion (equality of the mean and variance inherent in a Poisson process) must be rejected. Following Long [8], Chapter 8, and Cameron & Trivedi [2], Chapter 20, the negative binomial model was utilized to capture overdispersion in the dependent variable.
setting when within-round information is included (1.57 rounds to 4.29 rounds). Offering within-round information does not impact the expected frequency of maximum allocations in the one-to-setting.

Table 5 displays the results of the negative-binomial regression using the count of symmetric Nash equilibrium allocations as the dependent variable. The overall regression is not statistically significant. As suggested by Figure 3, no differences in expected frequencies occur across any pair-wise combinations of experimental treatments.

Table 6 displays the results of the negative-binomial regression using the count of complete free-riding allocations as the dependent variable. Comparing across the two matching settings with identical information conditions, complete free riding: 1) occurs significantly less often in the lump-sum setting (expected frequencies of 0.11 rounds in lump-sum and 0.6 rounds in one-to-one) when no within-round information is provided (p=0.003), and 2) occurs significantly more often in the lump-sum setting (expected frequencies of 0.97 rounds in lump-sum and 0.32 rounds in one-to-one) when within-round information is provided (p=0.004). Focusing on the lump-sum setting, a Wald test shows including within-round information (p = 0.000) significantly increases the occurrence of complete free-riding allocations. The expected frequency of complete free riding increases by 800% when information is added to the lump-sum setting (expected frequencies of 0.97 rounds with information and 0.11 rounds without information). In the one-to-one setting, however, the INFO coefficient is not statistically significant at the 10% level. Offering within-round information does not increase the occurrence of free-riding in the one-to-one setting.

3.4. An Initial Exploration of Group-Size Effects

The MSEXP procedures allow for the study of environments that would be difficult to accomplish within the space and monetary constraints of traditional experimental procedures. Specifically, the impact of the matching settings is examined with large groups. The data were collected for twenty-person groups using the MPCR = 0.6, token endowment = 25, and no within-round information on tokens to the group account treatment. In order to parallel the four-person treatments, the group return from a token allocated to the group account, previously denoted as G'(), is five times greater
for the twenty-person groups. Also, the lump-sum match trigger and the full match for the one-to-one treatments were increased from 60 to 300 tokens. The analysis presented below is based on 26 twenty-person groups (13 groups in each match setting) involving 520 participants from three experimental sessions, where a session corresponds to a large Introduction to Microeconomics class at Indiana University-Bloomington. Since participants in the four-person groups were recruited from smaller, upper-level and honors introductory-level classes, the larger groups are considered separately to avoid potential confounding effects due to subject heterogeneity.

Figure 4 displays the mean group-account allocations for the large-group sessions by decision round. Consistent with the small-group sessions, mean allocations to the group account in the lump-sum setting are larger than mean group-account allocations in the one-to-one setting for all decision rounds. Further, mean allocations to the group account are below the full-match 300-token level in the one-to-one setting during the final three decision rounds. This contrasts with the lump-sum setting, where mean allocations to the group account remain above the 300-token threshold for the final nine rounds.

Table 7 presents GLS estimation of a panel-data regression model (with session-specific random effects and cluster-robust standard errors) to evaluate the statistical significance of changing match settings. The dependent variable is group-level tokens allocated to the group account (not including external tokens). The independent variables are: a count of the number of default allocations for a particular group and decision round (DEFAULTS), a lump-sum setting dummy variable (LUMP), and nine decision-round dummy variables (RNDi, i=2, 3, … ,10). The results reveal that the LUMP coefficient is positive and significant at the 5% level. The predicted group-account allocations are 6% larger in the lump-sum setting compared to the one-to-one setting (277 tokens to 259 tokens). Thus, consistent with the small-group results, allocations to the group account in the lump-sum setting are significantly higher than in the one-to-one setting when there is no within-round information on tokens to the group account.
3.5. Examining Allocations at the Individual Level for Twenty-Person Groups

[Figure 5 here]

This subsection focuses on examining the individual allocations to the group account for the larger group-size sessions. Similar to Section 3.4., the analysis focuses on the frequency of occurrence of three benchmark allocations: the maximum (all 25 tokens), the symmetric Nash equilibrium (15 tokens), and complete free riding (0 tokens). Figure 5 displays the relative frequency of occurrence for the benchmark allocations across all rounds for each match setting. The most frequently observed benchmark allocation for each setting is the maximum, while complete free riding occurs least often in each setting. The difference in the relative frequency of each benchmark allocation across matching settings is small. Complete free riding occurs 1.6% less often in the lump-sum setting, while both the symmetric Nash equilibrium and the maximum allocation occur more often in the lump-sum setting (1.8% and 3%, respectively). Count-data regressions are used to evaluate the statistical significance of the differences illustrated in Figure 5. The regression for each of the three benchmark allocations is not significant at the 10% level. Unlike the four-person groups, no significant differences in benchmark allocations occur between matching settings in twenty-person groups.

4. Summary

The research reported in this study extends and tests the robustness of the research reported in Baker et al. [1]. Both studies examine behavior in public-goods settings using two institutions found commonly in the field: lump-sum matching and one-to-one matching. The present research extends the previous study by examining treatment conditions in which subjects were provided with information on total allocations to the group account within decision rounds and examining behavior in larger groups. Participants in these experiments were student volunteers from microeconomics courses at Indiana University-Bloomington. They made decisions across rounds that lasted multiple days and were given participation and performance incentives in the form of course extra credit, with the possibility of earning performance-based cash awards. Thus, the experimental environment lies somewhere between traditional tightly-controlled laboratory experiments and field experiments. While resource endowments (tokens) are
controlled and values are induced on the private and public good using a combination of extra-credit and cash rewards, communication opportunities and discussion of the decision-making problem are uncontrolled, arising endogenously both in class and out of class over decision rounds that typically last 3.5 days.

Decisions of participants using these nontraditional multiple-session procedures were first compared to decisions using traditional single-session procedures employing only cash rewards. Similar to Isaac et al. [6,7], there is no significant difference in allocation decisions across the two types of procedures. Further, the main result reported by Baker et al. [1] was also observed using the multiple-session procedures. Lump-sum matching elicits significantly larger allocations to the group account (the pure public good) than one-to-one matching when the MPCR (marginal per-capita return from a token allocated to the group account) is 0.6 and there is no within-round information provided on the current number of tokens allocated to the group account in four-person groups. The new data reported in this study reveal that this result is robust to a change in group size from N=4 to N=20.

One of the more intriguing results of this study relates to the role of within-round information on tokens allocated to the group account. The motivation for this treatment variable was to examine whether subjects use the additional information to coordinate more effectively on the symmetric payoff-dominant equilibrium, where the aggregate group-account allocation that exactly meets the threshold necessary to obtain the full benefits of the matching funds is shared equally by all group members. In the one-to-one setting, this change in information led to no significant change in behavior. In the lump-sum setting, however, there was a statistically significant 31% decrease in group-account allocations and a 28% decrease in the frequency of the group meeting the matching-funds threshold. At the individual level with lump-sum matching, the within-round information generated a striking decrease of 63% in the relative frequency of full-endowment group-account allocations, and an increase in the relative frequency of zero-token group-account allocations. The explanation for this negative effect of providing within-round group-account information in the lump-sum setting is that this information promotes gaming focused on exactly meeting the lump-sum threshold and thus diminishes the propensity for group members to allocate “insurance tokens” to increase the likelihood of reaching the threshold.
The significant impact under lump-sum matching of providing additional information on other group members’ within-round allocation decisions is generally consistent with results from the social-influence literature, such as Cason and Mui [3] and Chen et al. [4]. These studies focus on documenting, in a variety of laboratory and field environments, how both the normative and informational influences of providing data on others’ decisions can affect individual behavior. In the research reported here, a pure informational/strategic influence under lump-sum matching is more likely than a normative influence rooted in group conformity.

In future research we plan to explore further how these social-information issues interact with group decision-making institutions. In particular, in the research reported here, group members had the opportunity to revise their group-account allocations up or down at any time prior to the end of a decision round. We plan to extend our public-goods research to the study of groups where individuals can update within-round group-account allocations only in an upwards direction, and to the study of “leadership giving” where an external contributor starts each decision round with an unconditional group-account allocation that is announced to all (internal) group members.

Acknowledgement

We are thankful for research support provided by the Indiana University Center on Philanthropy.
References

Figure 1. Mean Internal Allocations to the Group Account: MSEXP vs. SSEXP Procedures
Figure 2. Mean Internal Group-Account Allocations: Group Size 4

Figure 2a. Lump-sum setting

![Graph showing mean internal group-account allocations for the lump-sum setting.](image)

Figure 2b. One-to-one setting

![Graph showing mean internal group-account allocations for the one-to-one setting.](image)
Figure 3. Individual Allocations to the Group Account Across All rounds: Group Size 4

Figure 3a. Lump-sum setting

Figure 3b. One-to-one setting
Figure 4. Mean Internal Group-Account Allocations: Group Size 20

Figure 5: Individual Allocations to the Group Account Across All Rounds: Group Size 20
Table 1. Design Summary: Number of Four-Person Groups by Treatment Condition

<table>
<thead>
<tr>
<th></th>
<th>Lump-Sum Matching</th>
<th>One-to-One Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Within-Round Information</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>Within-Round Information</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>
Table 2a. Linear Model: Comparing Group-Level Allocations to the Group Account between SSEXP and MSEXP Procedures

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Coefficient Estimate</th>
<th>Robust Clustered Standard Error</th>
<th>Ho: Coefficient = 0</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>55.6400</td>
<td>3.3867</td>
<td>16.43</td>
<td>0.000</td>
</tr>
<tr>
<td>LUMP</td>
<td>8.9417</td>
<td>4.8974</td>
<td>1.83</td>
<td>0.068</td>
</tr>
<tr>
<td>MSEXP</td>
<td>-1.5737</td>
<td>8.1609</td>
<td>-0.19</td>
<td>0.847</td>
</tr>
<tr>
<td>LUMPxMSEXP</td>
<td>7.2630</td>
<td>6.7059</td>
<td>1.08</td>
<td>0.279</td>
</tr>
</tbody>
</table>

Total Number of Observations = 530; 53 clusters of 10 observations

Model: $\chi^2(12) = 73.03, \ p = 0.000$

Fraction of variance due to session-specific random effect: 0.0620

Nine decision-round dummies are included in model but not shown in table

Table 2b. Hypothesis Tests: Comparing Group-Level Allocations to the Group Account between SSEXP and MSEXP Procedures

<table>
<thead>
<tr>
<th>Conditional Means Compared</th>
<th>Ho for Wald Test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSEXP vs. SSEXP</td>
<td>1-to-1</td>
<td>MSEXP = 0</td>
</tr>
<tr>
<td>MSEXP vs. SSEXP</td>
<td>LUMP-SUM</td>
<td>MS + (LUMPxMSEXP) = 0</td>
</tr>
<tr>
<td>1-to-1 vs. LUMP-SUM</td>
<td>SSEXP</td>
<td>LUMP = 0</td>
</tr>
<tr>
<td>1-to-1 vs. LUMP-SUM</td>
<td>MSEXP</td>
<td>LUMP + (LUMPxMSEXP) = 0</td>
</tr>
</tbody>
</table>
Table 2c. Nonparametric Tests for Lump-Sum Matching: Comparing Group-Level Allocations to the Group Account between SSEXP and MSEXP Procedures

<table>
<thead>
<tr>
<th>Decision Round</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSEXP Median</td>
<td>70.0</td>
<td>80.0</td>
<td>77.5</td>
<td>78.5</td>
<td>69.5</td>
<td>75.5</td>
<td>71</td>
<td>66.5</td>
<td>66</td>
<td>71.5</td>
</tr>
<tr>
<td>MSEXP Median</td>
<td>62.5</td>
<td>80.5</td>
<td>73.5</td>
<td>82</td>
<td>85</td>
<td>85</td>
<td>87.5</td>
<td>91.5</td>
<td>87.5</td>
<td>80.5</td>
</tr>
<tr>
<td>SSEXP std. dev.</td>
<td>12.7</td>
<td>10.3</td>
<td>13.1</td>
<td>13.2</td>
<td>15.2</td>
<td>13.0</td>
<td>11.6</td>
<td>14.4</td>
<td>15.7</td>
<td>9.6</td>
</tr>
<tr>
<td>MSEXP std. dev.</td>
<td>15.9</td>
<td>14.6</td>
<td>13.1</td>
<td>14.3</td>
<td>15.6</td>
<td>16.2</td>
<td>19.6</td>
<td>18.7</td>
<td>19.4</td>
<td>18.5</td>
</tr>
<tr>
<td>Mann-Whitney test</td>
<td>0.42</td>
<td>0.90</td>
<td>0.94</td>
<td>0.78</td>
<td>0.16</td>
<td>0.22</td>
<td>0.06</td>
<td>0.03</td>
<td>0.04</td>
<td>0.31</td>
</tr>
<tr>
<td>Levene variance test</td>
<td>0.55</td>
<td>0.12</td>
<td>0.78</td>
<td>0.89</td>
<td>0.91</td>
<td>0.25</td>
<td>0.15</td>
<td>0.25</td>
<td>0.21</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Table 2d. Nonparametric Tests for One-to-One Matching: Comparing Group-Level Allocations to the Group Account between SSEXP and MSEXP Procedures

<table>
<thead>
<tr>
<th>Decision Round</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSEXP Median</td>
<td>58</td>
<td>68.5</td>
<td>69.5</td>
<td>69</td>
<td>63.5</td>
<td>67</td>
<td>63.5</td>
<td>68.5</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>MSEXP Median</td>
<td>60</td>
<td>60</td>
<td>56</td>
<td>70</td>
<td>70</td>
<td>65</td>
<td>65</td>
<td>64</td>
<td>65</td>
<td>63</td>
</tr>
<tr>
<td>SSEXP std. dev.</td>
<td>11.2</td>
<td>14.0</td>
<td>12.4</td>
<td>14.5</td>
<td>14.5</td>
<td>15.3</td>
<td>14.6</td>
<td>15.2</td>
<td>17.1</td>
<td>19.4</td>
</tr>
<tr>
<td>MSEXP std. dev.</td>
<td>23.0</td>
<td>17.4</td>
<td>17.7</td>
<td>15.9</td>
<td>16.2</td>
<td>14.8</td>
<td>12.0</td>
<td>17.4</td>
<td>19.9</td>
<td>14.5</td>
</tr>
<tr>
<td>Mann-Whitney test</td>
<td>0.86</td>
<td>0.25</td>
<td>0.17</td>
<td>0.96</td>
<td>0.49</td>
<td>0.96</td>
<td>0.98</td>
<td>0.81</td>
<td>0.73</td>
<td>0.98</td>
</tr>
<tr>
<td>Levene variance test</td>
<td>0.00</td>
<td>0.42</td>
<td>0.10</td>
<td>0.69</td>
<td>0.34</td>
<td>0.76</td>
<td>0.55</td>
<td>0.91</td>
<td>0.66</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Table 3a. Linear Model: Comparing Treatment Effects with MSEXP Procedures

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Coefficient Estimate</th>
<th>Robust Clustered Standard Error</th>
<th>Ho: Coefficient = 0 Z</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>57.4335</td>
<td>3.8177</td>
<td>15.04</td>
<td>0.000</td>
</tr>
<tr>
<td>DEFAULTS</td>
<td>-1.7899</td>
<td>1.2719</td>
<td>-1.41</td>
<td>0.165</td>
</tr>
<tr>
<td>LUMP</td>
<td>15.9693</td>
<td>4.7739</td>
<td>3.35</td>
<td>0.001</td>
</tr>
<tr>
<td>INFO</td>
<td>-0.8253</td>
<td>4.2815</td>
<td>-0.19</td>
<td>0.848</td>
</tr>
<tr>
<td>LUMPxINFO</td>
<td>-21.9566</td>
<td>6.5827</td>
<td>-3.34</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Total Number of Observations = 590; 59 clusters of 10 observations

Model: F(13, 58) = 6.41, p = 0.000
R² = 0.2297

Nine decision-round dummies are included in model but not shown in table

Table 3b. Hypothesis Tests: Comparing Treatment Effects with MSEXP Procedures

<table>
<thead>
<tr>
<th>Conditional Means Compared</th>
<th>Ho for Wald Test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-to-1 vs. LUMP-SUM</td>
<td>LUMP = 0</td>
<td>0.001</td>
</tr>
<tr>
<td>1-to-1 vs. LUMP-SUM</td>
<td>LUMP+(LUMPxINFO) = 0</td>
<td>0.188</td>
</tr>
<tr>
<td>NO INFO vs. INFO</td>
<td>INFO = 0</td>
<td>0.848</td>
</tr>
<tr>
<td>NO INFO vs. INFO</td>
<td>INFO+(LUMPxINFO) = 0</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Table 4. Count-Data Model: Maximum Allocation

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Coefficient Estimate</th>
<th>Robust Clustered Standard Error</th>
<th>Ho: Coefficient = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>1.0116</td>
<td>0.1475</td>
<td>6.86</td>
</tr>
<tr>
<td>LUMP</td>
<td>1.5584</td>
<td>0.4437</td>
<td>2.16</td>
</tr>
<tr>
<td>INFO</td>
<td>0.8667</td>
<td>-0.1431</td>
<td>-0.53</td>
</tr>
<tr>
<td>LUMPxINFO</td>
<td>0.4218</td>
<td>-0.8632</td>
<td>-2.10</td>
</tr>
</tbody>
</table>

Total Number of Observations = 236; 59 clusters of 4 observations
Model: $\chi^2(3) = 13.26$, $p = 0.004$

Table 5. Count-Data Model: Symmetric Nash-Equilibrium Allocation

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Coefficient Estimate</th>
<th>Robust Clustered Standard Error</th>
<th>Ho: Coefficient = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>0.5404</td>
<td>0.1560</td>
<td>3.46</td>
</tr>
<tr>
<td>LUMP</td>
<td>1.1442</td>
<td>0.1347</td>
<td>0.41</td>
</tr>
<tr>
<td>INFO</td>
<td>1.0000</td>
<td>-1.43E-16</td>
<td>0.00</td>
</tr>
<tr>
<td>LUMPxINFO</td>
<td>1.1455</td>
<td>0.1358</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Total Number of Observations = 236; 59 clusters of 4 observations
Model: $\chi^2(3) = 1.57$, $p = 0.667$

Table 6. Count-Data Model: Complete Free-Riding Allocation

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Coefficient Estimate</th>
<th>Robust Clustered Standard Error</th>
<th>Ho: Coefficient = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>-0.5108</td>
<td>0.3670</td>
<td>-1.39</td>
</tr>
<tr>
<td>LUMP</td>
<td>0.1786</td>
<td>-1.7228</td>
<td>-2.93</td>
</tr>
<tr>
<td>INFO</td>
<td>0.5278</td>
<td>-0.6391</td>
<td>-1.43</td>
</tr>
<tr>
<td>LUMPxINFO</td>
<td>17.0947</td>
<td>2.8388</td>
<td>4.03</td>
</tr>
</tbody>
</table>

Total Number of Observations = 236; 59 clusters of 4 observations
Model: $\chi^2(3) = 19.01$, $p = 0.000$
Table 7. Linear Model: Group Size 20

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Coefficient Estimate</th>
<th>Robust Clustered Standard Error</th>
<th>Ho: Coefficient = 0 Z</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTANT</td>
<td>259.0495</td>
<td>11.4258</td>
<td>22.67</td>
<td>0.000</td>
</tr>
<tr>
<td>DEFAULTS</td>
<td>-1.0688</td>
<td>1.0828</td>
<td>-0.99</td>
<td>0.324</td>
</tr>
<tr>
<td>LUMP</td>
<td>17.4716</td>
<td>8.8636</td>
<td>1.97</td>
<td>0.049</td>
</tr>
</tbody>
</table>

Total Number of Observations = 260; 26 clusters of 10 observations
Model: $\chi^2(11) = 215.54$, p = 0.000
Fraction of variance due to session-specific random effect: 0.056
Nine decision-round dummies are included in model but not shown in table
Appendix. Launch Handout Distributed to Students

Group vs. Private Investment Exercise

You will have the opportunity to earn extra-credit points in a decision-making exercise referred to as the "Group Investment Exercise." Your participation in this exercise is totally voluntary. It is possible to get an A+ in this class based solely on your examination scores. Extra-credit points can only improve upon the course grade you would earn based solely on your exam scores.

The exercise consists of a series of ten decision rounds. In each round you will choose to allocate "tokens" between a "PRIVATE ACCOUNT" and a "GROUP ACCOUNT". When you log into the exercise for the first time (Round 1) the computer will present detailed instructions describing the exercise. After finishing the instructions you will make your allocation decision for Round 1. You will be able to review the instructions during all subsequent rounds if you wish to do so.

Cash Rewards

The computerized instructions explain that you will earn an amount of money based on the outcomes from all decision rounds. Your actual cash earnings in this exercise will be determined as follows: at the conclusion of the exercise a student will be drawn at random and paid in cash four times their final earnings shown at the end of the exercise. This process of randomly choosing students for cash payments will be repeated until the total of all cash payments is greater than or equal to $100, at which time the cash payment process will stop. To be eligible for a cash reward, you must log on to NovaNET and enter a decision for at least half of the decision rounds in the exercise.

Extra-Credit Rewards

In addition to the cash rewards discussed above, you will receive extra-credit points based on: 1) your performance as measured by your earnings over all decision rounds, and 2) your participation as measured by the number of rounds in which you log onto NovaNET, view the results from the previous round, and enter a decision.

The score recorded in the NovaNET gradebook summarizing your performance in this extra-credit exercise will be generated using the following "performance index" formula:

\[100 \times \left(\frac{\text{Actual Earnings} - \text{Min. Possible Earnings}}{\text{Max. Possible Earnings} - \text{Min. Possible Earnings}} \right) \]

For each individual, this score can range from 0 (if the individual's actual earnings are equal to the minimum possible earnings) to 100 (if the individual's actual earnings are equal to the maximum possible earnings). This score will be multiplied by a gradebook weight of .015 to determine the number of extra-credit points received. For example, if an individual's performance index score is 80 that person will have 80 x .015 = 1.2 extra-credit points added to their final average for the course. The maximum performance-based extra credit from this exercise is 100 x .015 = 1.5 points, and the minimum is 0 points. It is important to realize that your performance in this exercise is not based on a rank ordering of student earnings; it is possible for everyone in the class to earn either a small percentage or a large percentage of the maximum number of extra-credit points available in this exercise.

In addition to the extra-credit points based on your final earnings, you will receive .15 of an extra-credit point for each round in which you participate by logging onto NovaNET and entering a decision. After the exercise is finished, the number of rounds in which you participated will be recorded in the gradebook with an associated weight of .15. Thus, you can receive 10 x .15 = 1.5 additional extra-credit points by simply participating in all ten decision rounds.

Accessing the Exercise

You can access the exercise on the NovaNET computer network from any of the Windows-based UITS student technology centers on campus. If you'd like to try installing the NovaNET access software on your home computer, go to Professor Williams' web site: www.indiana.edu/~arlwilli. Click the link in the lower-left frame titled "Download NovaNET Portal" then follow the instructions to download and install the software on your computer. In the STC's, access to NovaNET is available by clicking with the left mouse button on "START" in the lower-left corner of the Windows main display. After opening the START menu, use the mouse to point to "Programs" then "Communications" then click the left mouse button on "NovaNET 3.3". This will launch the NovaNET access software. After a delay of a few seconds you should be presented with the NovaNET login page asking for your
NovaNET group and name. To access the extra-credit exercise you must: 1) log into the NovaNET computer network, and 2) log into the NovaNET application program that runs the market.

Feel free to discuss any aspect of this extra-credit exercise with classmates if you care to do so. However, since extra-credit points are awarded for participation in the market, *it is an act of academic dishonesty to have someone else enter your decisions for you.*

To log on to NovaNET type your "NovaNET group" and "NovaNET name" as follows.

NovaNET group: iuecon **NovaNET name:** vcm

After you successfully log on, you will be automatically routed to the "Group Investment Exercise" title page and asked to type your "class file" and your last name. Use the following information.

Class file: aw321

Roster name: first 6 letters of your last name plus the last 4 numbers in your ten-digit IU ID number

After logging in for Round 1, you will be routed to a set of instructions that describe the extra-credit exercise. The first round will probably take less than 15 minutes (feel free to take all the time you find necessary). Entering your decision for subsequent rounds will take less time since you do not have to read the instructions unless you desire to do so. Your allocation decisions are automatically stored by the computer.

Timing of the Decision Rounds

Round 1 begins after class today.
Round 1 ends and Round 2 begins at noon on Wednesday, 3/19. (The Wednesday after Spring Break.)
Round 2 ends and Round 3 begins at midnight (11:59:59pm) on Saturday, 3/22.
Round 3 ends and Round 4 begins at noon on Wednesday, 3/26.
Round 4 ends and Round 5 begins at midnight on Saturday, 3/29.
Round 5 ends and Round 6 begins at noon on Wednesday, 4/2.
Round 6 ends and Round 7 begins at midnight on Saturday, 4/5.
Round 7 ends and Round 8 begins at noon on Wednesday, 4/9.
Round 8 ends and Round 9 begins at midnight on Saturday, 4/12.
Round 9 ends and Round 10 begins at noon on Wednesday, 4/16.
Round 10 ends at midnight on Saturday, 4/19.

You must work through the instructions and enter a decision for the first round in order to participate in subsequent rounds. Anyone who misses Round 1 is eliminated from further participation and will receive zero extra-credit points. While network or server outages are very rare, it is strongly recommended that you not wait until the last day to log into the first round. It is your responsibility to take into account the fact that any networked computing resource could be unexpectedly unavailable from time to time.

Notification of Participation in Research Project

IRB Study #06-11254

The data collected in this class exercise are part of a research project on economic decision making being conducted by Professors James Walker and Arlington Williams of the Department of Economics. When you log into the exercise for the first time, you must choose whether or not your decisions are included as part of this research. The information given below will be available to you online when you are asked to allow or deny research consent. This is part of the standard procedures used by Indiana University for research using human subjects.

INFORMED CONSENT STATEMENT

INDIANA UNIVERSITY – BLOOMINGTON

You will first proceed through a set of instructions on the NovaNet computer system that describe the economic decision making problem. You will then participate in a series of decision making rounds. Your decision in each round will be how to allocate an endowment of tokens between two accounts, a private account and a group account. As explained in the class handout, your decisions, along with the decisions of others in your group, will determine
the extra-credit you receive, as well as the cash you might earn through a procedure where participants’ names are drawn randomly for cash payments. As noted on the handout, the decision exercise will last six weeks. On average, the instructions require less than 15 minutes, and each of the 10 decision rounds less than 5 minutes. Over the course of three years, this study plans to collect decisions from over 700 individuals in similar decision making settings.

RISKS
Your full name and ID number will not be recorded in this exercise; however, there may be a minimal risk of loss of confidentiality.

BENEFITS of THIS STUDY
Your decisions and those of others in this study will be used by the researchers for both education and research purposes. The research will expand our understanding of individual behavior in group decision making settings. Course extra credit and the potential for cash benefits to you are discussed below.

ALTERNATIVES TO TAKING PART IN THE STUDY
After reading this informed consent statement, you will have the option of choosing whether or not to have your decisions included as part of the research data. You also have the option not to participate in this decision exercise.

CONFIDENTIALITY
Your individual decisions will remain anonymous to other participants. Your identity will never be revealed in academic papers produced by this research. All decisions are recorded using a personal identifier containing only the first six letters of your last name and the last four numbers of your I.U. identification number. The researchers intend to keep the computerized database containing your personal identifier and decisions confidential, but absolute confidentiality cannot be guaranteed. For example, personal information may be disclosed if required by law. The data may also be shared with other researchers, but only in a manner that cannot be linked to a particular individual. For quality assurance and data analysis, certain individuals and organizations may access the research database that will include your decisions in this exercise. These include the study investigators, their research associates, the I.U.B. Institutional Review Board or its designees, the study sponsor, the Department of Economics, and (as allowed by law) state or federal agencies, specifically the Office for Human Research Protections.

COMPENSATION
As explained in the class handout, extra credit and the possibility of cash earnings in this exercise do not depend on whether you choose to having your decisions used as part of the research.

COSTS OF PARTICIPATION
Other than your time, there are no costs to you associated with participation in this exercise.

CONTACT
If you have questions at any time about the study or the procedures, you may contact the researchers: Professor James Walker, Wylie Hall 240, (812) 855-2760, walkerj@indiana.edu, or Professor Arlington Williams, Wylie Hall 202, (812) 855-4564, williama@indiana.edu.

For questions about your rights as a research participant or to discuss problems, complaints or concerns about a research study, or to obtain information, or offer input, contact the I.U.B. Human Subjects office, 530 E Kirkwood Ave, Carmichael Center, L03, Bloomington IN 47408, 812-855-3067 or by email at iub_hsc@indiana.edu.