ABSTRACT

This article first compares differences in hearing-aid outcome for groups of older adults fitted with different hearing-aid technologies, ranging from one-channel linear aids with output-limiting compression to four-channel wide-dynamic-range-compression devices with directional microphones. A total of four technologies were examined with 52 to 55 older adults fitted with each technology and assessed with multiple outcome measures. The only significant difference in performance across technologies was superior aided speech recognition in babble for the directional hearing aids when assessed in the sound booth with speech delivered at 0 degrees azimuth and competing babble delivered from 180 degrees azimuth. Importantly, however, all four groups, each with a different technology, demonstrated significant improvements in speech recognition in babble and indicated that they were satisfied with their hearing aids, found them to be beneficial, and used them ~7 to 8 hours per day, on average. Given the lack of differences in technology, the data were then pooled across groups to form one large data set of outcome measures from 333 older adults. From these data, guidelines were developed for the interpretation of individual scores from patients in other clinics with similar demographics as being “below average,” “average,” or “above average.”

KEYWORDS: Aging, hearing aids, outcome measures

Learning Objectives: As a result of this activity, the participant will be able to (1) compare the average performance of older adults across hearing-aid technologies, and (2) determine if his or her patient performs as expected on various hearing-aid outcome measures.

1Department of Speech and Hearing Sciences, Indiana University, Bloomington, Indiana; 2Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina; 3VA Tennessee Valley Healthcare System and Vanderbilt University, Nashville, Tennessee.

Address for correspondence and reprint requests: Larry E. Humes, Ph.D., Professor, Department of Speech and Hearing Sciences, Indiana University, Bloomington, IN 47405 (e-mail: humes@indiana.edu).

A Tribute to Fred H. Bess: 40 Years of Influence in Audiology; Guest Editor, Anne Marie Tharpe, Ph.D.

Roughly 30% of Americans >65 years of age experience hearing loss that is sufficient to disrupt everyday communication. Estimates of the prevalence of hearing loss among older adults vary with several factors, including the criteria for hearing impairment and the nature of the tools used to identify hearing impairment. It appears, however, that only ~20% of those older adults with impaired hearing in the United States seek out assistance in the form of hearing aids, a situation common in other countries as well. Of the hearing aids sold in the United States, roughly two thirds are purchased by older adults. Thus, study of hearing-aid outcome in older adults is needed.

Ultimately, clinicians would like to demonstrate to the patient or a third-party payer that the hearing aids have improved the patient's well-being and everyday function. Unfortunately, for the most part, the global measures of functional status available have generally proven to be insensitive to intervention with hearing aids in older adults. As a result, although work continues on the development of communication-sensitive functional assessment tools, research on hearing-aid outcome in older adults has focused on communication-based outcome measures instead.

Surprisingly, even in this narrower domain of communication-related function, few studies of multiple outcome measures in >25 to 30 older hearing-aid wearers have been reported. Two exceptions were (1) a series of studies at Indiana University in which >200 older adults were enrolled, and (2) the National Institute on Deafness and Other Communication Disorders (NIDCD)/Veterans Administration (VA) clinical trial of hearing aids in which >325 older adults participated. An analysis of the outcome measures from all of these studies revealed several common aspects or dimensions of communication-related outcome measures. This analysis, together with the analysis of another cohort of older adults wearing hearing aids, resulted in the conclusion that three dimensions of hearing-aid outcome are captured by most available measures of communication-related outcome: (1) objective measures of speech-understanding performance; (2) self-report measures of hearing-aid usage; and (3) self-report measures of hearing-aid benefit and satisfaction (referred to here as "benefaction"). Together, these three dimensions of outcome typically captured 65–75% of the total variance among the large sets of outcome measures. Furthermore, repeatedly, there was no association found between the first dimension (objective speech understanding) and either of the other two, but the latter two, usage and benefaction, were slightly and positively correlated (r = 0.30, typically). In general, one could assume these three dimensions of hearing-aid outcome to be essentially independent. As a result, this requires measures from each dimension to get a complete assessment of hearing-aid outcome.

Aside from what should be measured, another important practical issue regarding hearing-aid outcome measures is when they should be obtained. The research conducted at Indiana University represents, to our knowledge, both the largest data set available on the longitudinal changes in hearing-aid outcome, with multiple measurement intervals over a period of 1 year (N = 134) and 2 years (N = 47), and also the longest post-fit period of examination (3 years, N = 9). From these and other data, it can be concluded that valid and reliable communication-related hearing-aid outcome measures can be obtained at 4 to 6 weeks post-fit.

Having resolved some of the fundamental issues as to what to measure and when to measure it, some basic questions remain. One important clinical question is whether different hearing-aid technologies yield different outcomes. This was addressed partially by comparing two of the technologies used in earlier stages of the research at Indiana University. Humes et al compared the outcome measures at 1 month and 6 months post-fit obtained from two groups of 50 older adults wearing hearing aids. The two groups were matched carefully for age, gender, hearing loss, and prior hearing-aid experience. One group was fitted with analog single-channel linear hearing aids having output-limiting compression, and the other group was fitted with analog two-channel wide-dynamic-range-compression (WDRC) instruments. Briefly, across all outcome measures and both measurement intervals, no substantial
differences in outcome were observed. Importantly, and sometimes lost in comparisons of technologies, both technologies provided significant benefits to the groups of wearers.

In this article, we address this issue further by comparing the performance of four groups of ~50 individuals across four technologies. The average data presented for the single-channel linear and two-channel WDRC analog technologies in this article are essentially identical to the data reported for the 1 month post-fit for these two technologies by Humes et al.34 Here, however, we add data from two additional groups, each also numbering ~50 participants, who were fitted with digital four-channel WDRC hearing aids. These two groups differ only in whether the microphones of the hearing aids were programmed to function as omnidirectional or directional (fixed supercardioid) microphones. More details are provided in the next section.

After presenting these group data on several communication-related outcome measures for four different hearing-aid technologies in the next section, we then turn to an analysis of the individual data. As seen in the next section, few significant differences were observed between technologies. As a result, this afforded us the opportunity to pool these data to form one large data set of 333 older adults and then to analyze the distribution of scores on each outcome measure to define “average” or “typical” performance of older adults on such measures, as well as criteria for “above-average” or “below-average” performance. It is hoped that by making these data available, clinicians will have access to technology-independent norms or guidelines for typical or expected outcomes with hearing aids in older adults. Those identified as performing below average might be identified as patients who may be in need of additional counseling or intervention, more so than those performing at or above average. These individual data are presented after presentation and discussion of the group data in the next section.

GROUP DATA FOR OUTCOME MEASURES FROM DIFFERENT HEARING-AID TECHNOLOGIES

Participants
This section of the article presents the results from several communication-related outcome measures obtained from four groups of older adults, each fitted with a different hearing-aid technology. Table 1 summarizes the demographic characteristics of the four groups of participants included in this report. Note that the four groups are very similar in terms of sample size, age, average high-frequency hearing loss, gender composition, and proportion of new hearing-aid users. Univariate analyses of variance (age, average high-frequency hearing loss) and chi-square tests (gender composition, proportion of new users) confirmed the lack of significant differences ($p > 0.05$) across the four groups. The hearing loss configuration and bilateral symmetry also were very similar across the four groups, as indicated by the mean audiograms for the right and left ears in Fig. 1.

Methods
With regard to the hearing aids, as noted, each group was fitted with a different technology.

<table>
<thead>
<tr>
<th>Group</th>
<th>N</th>
<th>Age (M, SD) (years)</th>
<th>BinHFPTA (dBHL)</th>
<th>% Male</th>
<th>% New Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Ch, Linear</td>
<td>53</td>
<td>74.0 (6.7)</td>
<td>48.4</td>
<td>66</td>
<td>74</td>
</tr>
<tr>
<td>2: Ch, WDRC</td>
<td>52</td>
<td>74.6 (7.0)</td>
<td>48.3</td>
<td>66</td>
<td>74</td>
</tr>
<tr>
<td>4: Ch, Omni</td>
<td>53</td>
<td>75.4 (6.4)</td>
<td>50.3</td>
<td>60</td>
<td>67</td>
</tr>
<tr>
<td>4: Ch, Dir</td>
<td>55</td>
<td>74.6 (7.7)</td>
<td>50.8</td>
<td>69</td>
<td>71</td>
</tr>
<tr>
<td>Total</td>
<td>213</td>
<td>74.6 (6.9)</td>
<td>49.5</td>
<td>66</td>
<td>71</td>
</tr>
</tbody>
</table>

N, number of participants; SD, standard deviation; BinHFPTA, average pure-tone air-conduction hearing thresholds in the right and left ears at 1000, 2000, and 4000 Hz; WDRC, wide-dynamic-range compression.
One group (one-channel linear) received analog single-channel linear devices with output-limiting compression housed in full-concha in-the-ear (ITE) shells, another group (two-channel WDRC) received two-channel WDRC circuits housed in in-the-canal shells, and the third and fourth groups received digital four-channel WDRC circuits housed in full-concha ITE shells, with the only difference in these two groups being the directionality of the microphone. Half of the participants for this portion of the study were assigned randomly to the four-channel omnidirectional group, and the other half were assigned randomly to the four-channel directional group. The directional microphone was a fixed supercardioid configuration, and its function was verified using Verifit software and hardware (Etymonic Design, Dorchester, Canada). Verification of directional performance was obtained from both hearing

Figure 1 (Top) Mean right-ear and (bottom) left-ear air-conduction pure-tone thresholds for each of the four groups of older adults. Each group was fitted with a different hearing-aid technology, as indicated in the figure legend.
 aids in an arbitrary sample representing ~50% of the 108 participants receiving the four-channel devices, about half of whom had their hearing aids programmed to function in directional mode and half in omnidirectional mode. The frequency response of the hearing aids programmed for the directional-microphone function was equalized to match the frequency response of the hearing aids when set to the omnidirectional-microphone mode.

The same basic protocol was used to set and verify target gain for each participant in each of the four groups. First, based on audiological information obtained from each participant (air-conduction and bone-conduction hearing thresholds, as well as loudness discomfort levels), target 2-cm³-coupler gain values were generated at octave intervals from 250 through 4000 Hz, as well as at 1500, 3000, and 6000 Hz. Hearing aids were adjusted in the 2-cm³ coupler for a moderate level input (60 to 70 dB SPL, across studies) to match target in the coupler and were then fitted to the patient and verified using real-ear probe-tube microphone measurements. If adjustments to the hearing aid were required to match insertion-gain targets, then after a reasonable match had been obtained using real-ear measurements, defined as within 10 dB of target at 250 through 2000 Hz and within 15 dB of target at higher frequencies, the hearing aid was returned to the 2-cm³ coupler for a final set of coupler gain measurements. These coupler gain values were then recorded for future use (as were the final set of insertion-gain values).

The actual prescriptive procedure used to generate gain targets varied across studies with NAL-R used for the one-channel linear devices, Fig. 6 used for the two-channel WDRC instruments, and NAL-NL1 used for the four-channel digital devices. In some cases, these differences in prescriptive method are attributable to use of linear versus nonlinear devices, whereas in other cases they reflect the chronological development of prescriptive methods as this sequence of studies was being conducted. At the time the study with two-channel WDRC devices was initiated, for example, NAL-NL1 had not been developed. Furthermore, Fig. 6 generated gain targets for moderate input levels that were similar to those of NAL-R for the sloping hearing losses experienced by most participants, at least more so than other nonlinear prescriptive procedures available at the time such as DSLi/o. It should be kept in mind that the differences among clinical prescriptive methods is small considering the range of frequency responses found typically to yield equivalent performance on measures of speech recognition and sound quality. With each group and technology, software distributed by the developer of the respective prescriptive approach was used to generate targets, rather than the manufacturer’s version of that prescriptive protocol. Within a given group of participants, all were fitted bilaterally with identical make and models of hearing aids. In addition, participants paid the typical clinic price for the devices at the time of delivery and then were paid as research subjects for return visits during which they completed a variety of measures, including the outcome measures described here.

After verification of real-ear gain, the participant was counseled about the use, function, and care of the hearing aids. The participant returned 2 weeks later, and unaided measures of speech understanding were obtained. Although the specific measures obtained varied somewhat from study to study, one measure in common across all studies was chosen for evaluation here. This was the presentation of the Connected Speech Test (CST) at 65 dB SPL from a loudspeaker (Radio Shack Minimus 7) located at 0 degrees azimuth and elevation with the multitalker babble from the CST presented at 57 dB SPL (+8 dB signal-to-babble ratio) from an identical loudspeaker located at 180 degrees azimuth and 0 degrees elevation. Loudspeakers were located 1 meter from a position corresponding to the center of the listener’s head, and all sound levels are specified at this location using the method of substitution.

Approximately 2 to 4 weeks later (4 to 6 weeks post-fit), the participant returned to complete an aided set of CST measurements in identical fashion. All CST scores, aided and unaided, were based on the presentation of two passage pairs including a total of 50 key words. When returning and prior to the speech-recognition testing, the patient’s hearing aids were removed, inspected, and placed in the 2-cm³.
coupler to match the gain at 1000 Hz that had been recorded previously at the verification stage. In addition to the completion of the CST under-aided listening conditions, the patient also completed a variety of self-report measures. Although the specific measures completed varied across studies, a set of several measures was common to all studies, and the results of these outcome measures are reported here. The specific self-report outcome measures common across studies were (1) the Hearing Aid Performance Inventory (HAPI), (2) the Glasgow Hearing Aid Benefit Profile (GHABP), (3) the MarkeTrak-IV hearing-aid satisfaction survey, and (4) a hearing-aid usage diary or daily log. Each of these outcome measures was administered in the presence of the clinician and used a paper-and-pencil format.

For the GHABP, only the four prototypical listening situations were used in the earlier studies, and analysis reported here is restricted to scores for these four conditions. In the more recent studies with four-channel digital WDRC devices, the participant was allowed to develop up to four patient-specific listening situations for use in the GHABP, as has been recommended, but many patients failed to do so or, when doing so, they could only describe one or two additional listening situations not covered by the prototypical situations required of everyone. In addition, the MarkeTrak-IV satisfaction survey has items that appear in one of three categories: hearing-aid features, listening situations, and dispenser-related items. In our prior use of this survey, we chose to collapse the first two categories into a single global satisfaction rating and ignore the dispenser-related items. To distinguish this usage of the data from the typical item-by-item display of results for the MarkeTrak surveys, we refer to this measure as the Hearing Aid Satisfaction Survey (HASS).

Results and Discussion
Fig. 2 displays the means and standard deviations for each of the four groups for the unaided and aided CST measures. A mixed-model general linear model (GLM) analysis was used to analyze the data in Fig. 2 with a repeated-measures factor of listening condition (aided

Figure 2 Means and standard deviations (error bars = 1 SD) for the percentage-correct scores from the Connected Speech Test (CST) for each of the four participant groups in this report. Speech was presented at 65 dB SPL and multitalker babble at 57 dB SPL (+8 dB signal-to-babble ratio) with unaided scores on the left and aided scores on the right. The asterisk signifies that the only significant difference among the four aided CST scores occurred for the four-channel directional hearing aids when compared with two of the other three aided CST scores. See text for further details.
or unaided) and a between-subjects factor of hearing-aid technology. This analysis revealed a significant main effect of listening condition \([F(1,209) = 39.9, p < 0.01]\), no significant effect of technology \([F(3,209) = 1.2, p > 0.1]\), but a significant interaction between listening condition and technology \([F(3, 209) = 2.7, p < 0.05]\). This pattern of results is interpreted as indicating that aided performance was significantly better than unaided performance for all technologies, but that the magnitude of the difference between aided and unaided listening varied across technologies.

To examine this further, aided and unaided scores were analyzed for the effects of hearing-aid technology separately, and post hoc paired comparisons were performed as needed. A significant effect of technology or listener group was observed for the aided CST scores only, and post hoc pairwise comparisons revealed that it was the aided CST score for the four-channel directional-microphone instruments that was significantly \((p < 0.05)\) higher than that of the one-channel linear and four-channel omnidirectional-microphone devices. Given the fixed supercardioid directional characteristics of the four-channel hearing aids when programmed for directional mode and the loudspeaker configuration used in this study (speech at 0 degrees and babble at 180 degrees azimuth), it was expected that the aided scores for the directional system would be superior to those of the other instruments. In addition, the lack of a significant difference between groups with regard to unaided performance also was expected given the close match among groups in terms of hearing loss (Fig. 1) and age (Table 1).

It is important to emphasize that, in all four listener groups, aided performance was significantly better than unaided performance for the CST presented at conversational level (65 dB SPL) in multitalker babble at a representative +8 dB signal-to-babble ratio. That is, regardless of technology, when hearing aids were well fit to prescriptive targets, aided performance under typical listening conditions was significantly better than unaided performance. In other words, use of hearing aids resulted in higher scores in older adults with impaired hearing, regardless of technology, but in these constrained listening situations (auditory cues only, speech at 0 degrees and competition at 180 degrees, sound-treated booth with no reverberation) superior aided performance was observed with directional microphones.

Fig. 3 presents the means and standard deviations for each of the four groups fit with different technologies on the HAPI, a self-report measure of hearing-aid benefit or

Figure 3 Means and standard deviations (error bars = 1 SD) for the four Hearing Aid Performance Inventory (HAPI) subscales and each of the four groups of hearing-aid wearers. Note that lower scores are better on the HAPI.
helpfulness. As recommended by Walden et al.,42 the 64 items on the HAPI were partitioned into four subscales for scoring: (1) speech in noise (Sp Noise); (2) speech in quiet (Sp Quiet); (3) speech with reduced cues (Sp Red Cue), as in communication with another person while not being able to see the talker’s face (in separate rooms, over the telephone, etc.); and (4) miscellaneous (Misc). Note that lower scores on the HAPI scale reflect more benefit or greater helpfulness from hearing aids. A mixed-model GLM analysis of the data in Fig. 3 failed to find a significant effect of subject group on any of the HAPI subscales \(F(3,208) = 1.1, p > 0.1\), but the main effect of HAPI subscale was significant \(F(3,624) = 58.1, p < 0.01\) and the interaction between group and subscale was not significant \(F(9,624) = 0.6, p > 0.1\). Post hoc pairwise comparisons for the significant effect of the HAPI subscale revealed that the scores on the Speech-in-Noise subscale were significantly \((p < 0.01)\) higher (worse) than the scores on the other three subscales, and the scores on the Speech-in-Quiet subscale were significantly \((p < 0.05)\) lower than the scores on the other three subscales. No other pairwise comparisons for the HAPI subscales were significant.

Thus extensive probing of speech-communication benefits received by the wearers in many everyday listening situations with the HAPI failed to show superiority of one technology over the others. Nonetheless, there were two noteworthy trends in these data. First, on average, the wearers considered their hearing aids, across all technologies, to be helpful. Second, the older adults found the hearing aids, regardless of technology, to be least helpful in noise and most helpful in quiet.

Fig. 4 summarizes the group data for the remaining self-report measures completed by all participants. The means and standard deviations from two measures of usage, daily logs of hours used (Hours Used) and GHABP usage ratings (GHABP-use), one measure of benefit or helpfulness from the GHABP (GHABP-help), and two measures of satisfaction, GHABP satisfaction ratings (GHABP-sat) and HASS-global, appear in this figure. The first set of data for Hours Used (left of the vertical dashed line in Fig. 4) should be referenced to the left ordinate (‘‘Hours/Day’’), whereas the other four sets of data (to the right of the vertical dashed line) should be referenced to the right ordinate (‘‘Scale Score’’). In all five data sets in this figure, higher scores represent a

![Graph](image-url)

Figure 4 Means and standard deviations (error bars = 1 SD) for the (middle) three Glasgow Hearing Aid Benefit Profile (GHABP) scales, (far left) daily use diaries, and (far right) the Hearing Aid Satisfaction Survey (HASS) for each of the four groups. Daily usage logs at the far left make use of the left ordinate (‘‘Hours/Day’’), whereas the other four self-report measures make use of the right ordinate (‘‘Scale Score’’).
more successful outcome. Separate between-subjects GLM analyses were conducted, one for each of the five outcome measures in Fig. 4, and no significant \(p > 0.1\) differences were observed across groups for any of the outcome measures. Thus the four technologies yielded equivalent self-reported usage, benefit, and satisfaction among older adults wearing hearing aids. Again, however, it is important to note that the average values for each outcome measure, regardless of technology, are quite good. For example, the hearing aids were worn, on average, 7 to 8 hours per day, and the average GHABP and HASS ratings were closer to the maximum end of the scale than the minimum, indicating that the wearers were generally satisfied, received benefit, and used their hearing aids frequently.

The group data presented in Figs. 2, 3 and 4 can be summarized as follows. First, regarding differences across the four technologies examined here, only aided CST scores in the sound booth differed significantly across technologies. In particular, the four-channel digital WDRC hearing aids with directional microphones yielded significantly higher aided CST scores than the other three technologies. Moreover, because one of the other three technologies examined here included hearing aids identical to the directional hearing aids, but with the microphones programmed to be omnidirectional, one can conclude it is this directional feature of the hearing aids that underlies the significantly higher aided CST performance, rather than the other features of these hearing aids (digital four-channel WDRC). As has been observed previously, however, the advantage of hearing aids with directional microphones measured in the constrained listening conditions of the sound booth often do not generalize to everyday listening situations outside the sound booth. There were no differences observed across the four hearing-aid technologies for any of the self-report measures of hearing-aid benefit, satisfaction, or usage.

Second, despite the lack of many differences in outcome across technologies, the average data for all four groups were generally quite positive with regard to hearing-aid outcome. That is, on average, older adults wearing hearing aids reported that they found the devices to be helpful, were satisfied with their performance, and used them frequently. In this regard, the group data are similar to the comparison of technologies in the NIDCD/VA clinical trial. In that study of >325 hearing-aid wearers, few group differences were observed across the three technologies evaluated. The three hearing-aid technologies evaluated in the NIDCD/VA study, using a within-subject crossover design, were all single channel, with differences in compression characteristics (no compression—linear with peak-clipping, linear with output-limiting compression, and WDRC). In addition, as in the present article, the average performance of the hearing-aid wearers in the NIDCD/VA study also was quite encouraging regarding hearing-aid outcomes, for both objective measures of speech understanding (CST in babble) and self-reported measures of benefit. Moreover, follow-up studies of various Indiana University and NIDCD/VA cohorts have demonstrated that these positive outcomes are sustained for several years.

Finally, despite the superior performance of the directional-microphone technology for aided CST scores in babble, a detailed survey of the communication difficulties of the older adults while wearing their hearing aids (the HAPI) still revealed significantly less benefit provided by the hearing aids, including those with directional microphones, for speech in noise than for speech in quiet. Thus this remains a challenging listening situation for older adults wearing hearing aids, regardless of technology, and must continue to be addressed in future research.

INDIVIDUAL DIFFERENCES IN OUTCOME MEASURES REGARDLESS OF TECHNOLOGY

Although it is useful to know that hearing aids are beneficial, on average, for older adults with impaired hearing, this general knowledge is of little practical value to clinicians. Clinicians, of course, deal with individual hearing-aid wearers and require some means of interpreting individual scores for outcome measures. One approach would simply aim toward every patient achieving scores of 100% on the CST and
ratings of “very satisfied” and “very helpful” for measures of satisfaction and benefit, respectively. This is not a very realistic objective. A minimalist approach, in contrast, would be simply to aim toward none of a clinic’s patients being at the bottom of each scale (e.g., 0% on the CST or “very dissatisfied” for satisfaction ratings). This objective is also problematic. Given that the differences in speech recognition for different technologies were not significant, except for the aided CST with the hearing aids having directional microphones, and assuming that the subject samples in this report using each technology can be considered typical or representative of older adults in other clinics (see demographics in Table 1), it is both appropriate and informative to pool the data for all outcome measures to form a large data set. From this larger data set, estimates of the median or typical performance can be derived for comparison to scores obtained from other patients in other clinics having similar patient demographics.

If the data from all four studies discussed thus far were pooled, it would represent a total sample of 213 older adults. However, for the study using one-channel linear hearing aids, outcome measures from 1 month post-fit were available for a total of 173 older adults. A subset of 53 of these individuals was used in the earlier comparison of technologies to better match the demographics of the other subject samples and to come closer to equating the sample sizes for statistical analysis. To determine whether the data from these additional 120 older adults could be included in this analysis of individual data, the demographic characteristics (gender composition of the group, percentage of new users, ages of the participants and their average high-frequency hearing loss) of each group were compared, as were the groups’ results for the outcome measures included in this article. The high-frequency-average hearing loss of the larger group (N = 120) was 3.5 dB worse than that of the smaller group (N = 53), and this difference was significant (p < 0.05). In addition, there were fewer new hearing-aid users in the larger group (55%) compared with the smaller group (74%), and this difference was significant (p < 0.05). Other than these two differences, however, there were no significant differences in demographics or hearing-aid outcome between the smaller and larger groups fitted with one-channel linear devices. These differences were considered to be minor, and the data for these 120 older adults were added to the data set to form a larger data set based on the results from 333 older adults. The demographics for this larger group of 333 older adults were as follows: (1) mean age of 73.9 years (SD, 6.8 years; range, 60 to 89 years), (2) mean binaural high-frequency pure-tone average of 50.4 dB HL (SD, 10.6 dB HL; range, 22 to 80 dB HL), (3) 67% men, and (4) 65.5% new hearing-aid users. Not surprisingly, these values are very similar to those shown previously at the bottom of Table 1 for the 213 older adults included in the comparison of hearing-aid technologies.

Fig. 5 provides a cumulative distribution of the HAPI subscale scores for the 333 older adults included in this portion of the report. Notice that the scores for three of the four HAPI subscales could be reasonably represented by a single cumulative distribution. Only the speech-in-noise subscale, which generally gave higher (worse) estimates on the inverted helpfulness scale of the HAPI, requires separate interpretation. The horizontal dashed line at a proportion of 0.5 corresponds to the group median. Fifty percent of the group scored at or above the median, and the other half scored below the median. Thus, if the HAPI ratings are assigned numerical scores, as in this report, with “Very Helpful” = 1, “Helpful” = 2, and so on, and then mean subscale scores are calculated using the subscales described by Walden et al for a given patient, one can compare that patient’s calculated subscale scores to the median or “average” performance of a similar group of older adults to determine whether the patient is performing as expected, “above average,” or “below average.” The vertical dashed arrows extend from the intersection of the 0.5 proportion horizontal line with the cumulative distributions to the abscissas to facilitate this use of these data. Except for the speech-in-noise subscale of the HAPI, for example, the average rating should be “helpful” with a corresponding numerical value of ~2. For the speech-in-noise subscale
of the HAPI, the corresponding numerical value representing “average” or “typical” performance would be a rating of ~ 2.4.

Fig. 6 illustrates similar cumulative distributions for the three scales from the GHABP (unfilled symbols), plus a derived scale for “benefaction” (filled symbols), which is simply the arithmetic average of each patient’s helpfulness and satisfaction ratings from the GHABP. Notice that the distributions are not as smooth as they were for the HAPI. This is likely the result, in part, of the small number of items (four) averaged for each scale of the GHABP when deriving the scale score. Nonetheless, the median can again be determined (horizontal dashed line) for each scale and then used to interpret the scores of other patients as “average,” “above average,” or “below average,” as desired. For the GHABP, the helpfulness, satisfaction, and derived benefaction scales can be represented by the same median score of 3 and the use scale by a median score of 4. This suggested scoring differs from that recommended for the GHABP, but it is considerably easier to implement. In addition, because several prior factor analyses of hearing-aid outcome measures have found measures of self-reported benefit and satisfaction to be very highly correlated, it is recommended here that the results of these two scales be combined for a more reliable eight-item measure of “benefaction” with a median of 3.0. Moreover, given the small number of items in the scale, individual GHABP scale scores are easier to calculate, even with eight items for the benefaction measure, than HAPI scores. It should be noted that, as described earlier in this article, the GHABP scores reported here were based on ratings for only the four prototypical listening situations included for all patients; none of the open-ended patient-generated listening situations were included in the score calculations. If one wishes to use the norms in Fig. 6 clinically, it is important that the GHABP scores be computed in a manner identical to that used for the norms.

When comparing individual scores from patients to norms derived in this article, it would be helpful to have a range of values around the median that could be considered representative of “average” or “typical” performance on that outcome measure. One possible

Figure 5 Cumulative distribution of HAPI (Hearing Aid Performance Inventory) subscale scores for 333 older adults. Horizontal dashed line at a proportion of 0.5 represents the median or 50th percentile. The vertical dashed arrows show the approximate values that correspond to the medians for each subscale. Exact values are provided in Table 2.
approach to doing so is illustrated via the cumulative distributions for the remaining hearing-aid outcome measures in this report shown in Fig. 7. Here there are three horizontal dashed lines in each panel, and each panel shows the cumulative distribution for a different outcome measure. The middle horizontal dashed line in each panel of Fig. 7 marks the median, as in the two previous figures. The other two horizontal dashed lines in each panel mark the 75th (upper line) and 25th (lower line) percentiles and together demarcate the interquartile range for each outcome measure. There are various ways in which these horizontal boundaries could be applied to interpret individual data. For example, one could use the entire interquartile range as a region of “average” or “typical” performance and the other two regions, above the 75th percentile and below the 25th percentile, could be considered regions for “above-average” and “below-average” scores, respectively. Alternatively, scores corresponding to the upper quartile (> 75th percentile) could be considered to be “well above average,” between the 50th and 75th percentile as “above average,” 25th to 50th percentile as “below average,” and the lower quartile (< 25th percentile) as “well below average.” Regardless of the labels chosen, it should be possible to use the cumulative distributions provided in Figs. 5–7 for the hearing-aid outcome measures in this article to interpret individual outcome measures from patients at other clinics with similar demographics and use of the same outcome measures. To facilitate this usage of these data, Table 2 provides the numerical values corresponding to the 25th, 50th, and 75th percentiles for the cumulative distributions of the scores from the 333 older adults in this study.

Of the guidelines or norms provided in Table 2, probably the most problematic is that for aided CST scores. The guidelines for this measure simply provide an expected “average” aided score, but the aided score is moderately and significantly correlated with the unaided CST score ($r = 0.62; p < 0.001$) and average high-frequency hearing loss ($r = -0.44; p < 0.001$). The unaided CST score, in turn, is moderately and significantly correlated with average high-frequency hearing loss ($r = -0.66; p < 0.001$). Of the outcome measures described in this report, aided CST performance was the only one that was moderately correlated with hearing loss. As a result, the accuracy of the guidelines provided in Table 2

![Figure 6](image_url) Cumulative distribution of Glasgow Hearing Aid Benefit Profile (GHABP) subscale scores for 333 older adults. Horizontal dashed line at a proportion of 0.5 represents the median or 50th percentile. The vertical dashed arrows show the approximate values that correspond to the medians for each subscale. Exact values are provided in Table 2.
for this outcome measure will vary systematically as the amount of high-frequency hearing loss deviates from the average for the group of 333 participants.

To compensate for this inherent inaccuracy, one could provide norms for aided CST scores broken down by severity of high-frequency hearing loss, or alternatively, by unaided

Figure 7 Cumulative distributions of (top) aided Connected Speech Test (CST) scores, (middle) hearing-aid usage from daily logs, and (bottom) Hearing Aid Satisfaction Survey (HASS) or MarkeTrak satisfaction survey scores for 333 older adults. Horizontal dashed lines show the scores in each panel that correspond to the 25th, 50th (median), and 75th percentiles. Exact values for each percentile shown are provided in Table 2.
CST scores. The latter approach was chosen here because it is recommended that both unaided and aided CST scores be obtained for a given hearing-aid wearer with the aided scores interpreted according to these guidelines and the difference between aided and unaided scores considered relative to 95% critical differences for speech-recognition scores based on 50 items. That is, consideration should be given to whether the aided performance of the patient is “average,” “above average,” or “below average” and whether the aided performance represents a significant improvement from unaided performance. Table 3 provides median and interquartile range values for aided CST scores when unaided CST scores were binned into five groups that were roughly equal in size. This allowed for a sufficient sample size in each bin (n = 51 to 78) on which to base the medians and interquartile ranges while still providing a more accurate prediction of aided CST performance.

The information included in Table 3 could be used as follows. Once the clinician has obtained the unaided CST score, this score will be found in one of the five “unaided CST” bins in the first column. The “aided CST” columns then provide the 25th, 50th, and 75th percentiles for the aided CST scores, given an unaided CST score in the specified range. It will then be possible to determine whether that individual’s aided CST performance is “average,” “above average,” and so on. Again, as is the case for all of the norms provided in Tables 2 and 3, it is critical that the scores be obtained by the clinician in the same manner as the scores comprising the norms. For the aided (and unaided) CST, this means using commercially available recorded materials, with the speech presented at 0 degrees azimuth and noise at 180 degrees azimuth.

The information included in Table 3 could be used as follows. Once the clinician has obtained the unaided CST score, this score will be found in one of the five “unaided CST” bins in the first column. The “aided CST” columns then provide the 25th, 50th, and 75th percentiles for the aided CST scores, given an unaided CST score in the specified range. It will then be possible to determine whether that individual’s aided CST performance is “average,” “above average,” and so on. Again, as is the case for all of the norms provided in Tables 2 and 3, it is critical that the scores be obtained by the clinician in the same manner as the scores comprising the norms. For the aided (and unaided) CST, this means using commercially available recorded materials, with the speech presented at 0 degrees azimuth and noise at 180 degrees azimuth.

Table 3 Quartiles for Aided CST Scores Derived for Subgroups of 333 Older Adults Based on Unaided CST Percent-Correct Performance

<table>
<thead>
<tr>
<th>CST Score Range (%</th>
<th>N</th>
<th>25th Percentile</th>
<th>50th Percentile</th>
<th>75th Percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–34</td>
<td>66</td>
<td>28</td>
<td>54</td>
<td>70</td>
</tr>
<tr>
<td>36–68</td>
<td>73</td>
<td>66</td>
<td>74</td>
<td>82</td>
</tr>
<tr>
<td>70–80</td>
<td>61</td>
<td>70</td>
<td>82</td>
<td>90</td>
</tr>
<tr>
<td>82–90</td>
<td>78</td>
<td>80</td>
<td>88</td>
<td>94</td>
</tr>
<tr>
<td>92–100</td>
<td>51</td>
<td>84</td>
<td>92</td>
<td>96</td>
</tr>
</tbody>
</table>

Note: The “bins” for unaided Connected Speech Test (CST) scores were based on 20th, 40th, 60th, and 80th percentiles for the unaided scores, then adjusted slightly up or down to the nearest possible CST score (that this, the closest even whole-number score, given 50 items per score). The same slight adjustments were made for the aided CST quartiles.
Moreover, these assessments, aided and unaided, were all obtained binaurally in the sound field.

To illustrate the use of the GHABP norms provided in this report, data from 21 adult hearing-aid wearers evaluated at the Medical University of South Carolina were examined. The demographic characteristics of this group were very similar to those shown previously in Table 1 for the groups in the various Indiana University studies. Individuals were fitted bilaterally with digital four-channel WDRC ITE hearing aids programmed to match NAL-NL1 targets. For these 21 hearing-aid wearers, GHABP measures were completed 3 to 6 months after hearing-aid fit. Fig. 8 plots the results from these older adult hearing-aid wearers in a two-dimensional space with GHABP use on the abscissa and GHABP benefaction on the ordinate. Dashed vertical and horizontal lines mark the median values along each axis from the norms in Table 2. The 14 data points in the upper right quadrant demarcated by these dashed lines represent 14 hearing-aid wearers who scored “at or above average” on both GHABP measures. In a similar manner, those data points in the lower left quadrant represent the GHABP results from five older adults who performed “below average” on both of these outcome measures. In addition, two remaining cases fall in the other quadrants, representing below-average performance on only one of the two GHABP measures. Based on this type of analysis, 5 of the 21 cases (those with below-average performance on both GHABP measures) might be considered to be “at risk” for hearing-aid rejection because of the less-than-average performance on these hearing-aid outcome measures. Finally, it should be noted that Fig. 8 provided data for only two of the three outcome dimensions needed for a complete evaluation of outcome. CST scores, however, were not obtained from these 21 older adults and could not be considered in this example.

Figure 8 Scatterplot of individual data from 21 older hearing-aid wearers tested at the Medical University of South Carolina. Dashed lines represent the median values from Table 2 for each of the Glasgow Hearing Aid Benefit Profile (GHABP) outcome measures shown.
The primary purpose of labeling or categorizing the performance of older hearing-aid wearers based on these norms would be to enable early and additional intervention for those patients with outcome measures “below average.” The additional intervention could be in the form of counseling, additional training in communication strategies, or auditory training. The group data presented earlier, however, suggest that the answer does not lie in the technology alone because there were no appreciable differences in outcome when technology was varied from one-channel analog linear devices to four-channel digital WDRC devices (with or without directional microphones). To increase the percentage of older adults with impaired hearing who purchase hearing aids (i.e., an increase from 20% market penetration), improvement in outcome through counseling, training, or both appears to be critical. This especially is true in the area for which the technology remains most limited: the understanding of speech in the presence of background competition, frequently other speech. In addition to pointing toward the need for additional interventions, such a categorization of outcomes may lead the clinician to closer scrutiny of the hearing-aid fits, including audibility considerations, for those individuals performing below average in multiple dimensions.

ACKNOWLEDGMENTS
This work was supported, in part, by a grant from the National Institute on Aging (R01 AG 08293) and in part by research grants P50 DC00422 and R01 DC00184 from NIH/NIDCD and the MUSC General Clinical Research Center (M01 RR01070).

REFERENCES