76. Zhou, L.; Zhou, Y.; Shi, W.; Baker, L.A. Alternating Current Potentiometric Scanning Ion Conductance Microscopy (AC-PSICM), J. Phys. Chem. C., 2015, accepted.

75. Shi, W.; Sa, N.; Thakar, R.; Baker, L.A. Nanopipette Delivery: Influence of Surface Charge, Analyst, 2015, accepted. (http://dx.doi.org/ 10.1039/C4AN01073F)

74. Weber, A. E.; Shi, W.; Baker, L.A. Electrochemical Applications of Scanning Ion Conductance Microscopy. In Electroanalytical Chemistry; Bard, A.J., Zoski, C. Eds.; 2015, accepted.

73. Saha-Shah, A.; Weber, A.E.; Karty, J. A.; Ray, S. J.; Hieftje, G. M.; Baker,  L. A. Nanopipettes: probes for local sample analysis, Chem. Sci., 2015, 6, 3334-3341. (http://dx.doi.org/10.1039/C5SC00668F)

72. Zakeri, R.; Basore, J R.; Baker, L.A. Modulated Fluorescence Detection with Microelectromagnetic Traps, Anal. Meth., 2015, 7, 2273-77. (http://dx.doi.org/10.1039/C4AY02828G)

71. Friedman, A.K.; Baker, L.A. Nanopores and Nanoporous Membranes. in Nanoelectrochemistry; Mirkin, M.V., Amemiya, S., Eds., CRC Press, 2015, 395-438.

70. Haywood, D.G.; Saha-Shah, A.; Baker, L.A.; Jacobson, S.C. Fundamentals of Nanofluidics: Nanopores, Nanochannels and Nanopipets, Anal. Chem., 2014, 87, 172-187. (http://dx.doi.org/10.1021/ac504180h)


69. Zhou, Y.; Bright, L.; Shi, W.; Aspinwall, C.A.; Baker, L.A. Ion channel probes for scanning ion conductance microscopy, Langmuir, 2014, 30, 15531-15535. (http://dx.doi.org/10.1021/la504097f)

68. Baker, L.A.; Chakraverty, D.; Columbus, L.; Feig, A.; Jenks, W.; Pilarz, M.; Stains, M.; Waterman, R.; Wesemann, J. Cottrell Scholars Collaborative New Faculty Workshop: Professional Development for New Chemistry Faculty and Initial Assessment of its Efficacy, J. Chem. Ed., 2014, 91, 1874-1881. (http://dx.doi.org/10.1021/ed500547n)

67. Weber, A.E.; Baker, L.A. Experimental studies of resolution in scanning ion conductance microscopy, J. Electrochem. Soc., 2014, 161, H924-H929. (http://dx.doi.org/10.1149/2.0701414jes)

66. Zhou, L.; Zhou, Y.; Baker, L.A. Measuring Ions with Scanning Ion Conductance Microscopy, ECS Interface, 2014, 2, 51-56. (http://www.electrochem.org/dl/interface/sum/sum14/if_sum14.htm)

65. Zhou, Y.; Chen, C.C.; Weber, A.E.; Zhou, L.; Baker, L.A. Potentiometric Scanning Ion Conductance Microscopy, Langmuir, 2014, 30, 5669-5675. (http://dx.doi.org/10.1021/la500911w)

64. Morton, K.C.; Baker, L.A. Atomic Force Microscopy-based Bioanalysis for the Study of Disease, Anal. Meth., 2014, 6, 4932-4955.(http://dx.doi.org/10.1039/C4AY00485J)

63. Laracuente, A.; Baker, L.A.; Whitman. L.J. Copper silicide nanocrystals on hydrogen-terminated Si(001), Surf. Sci., 2014, 624, 52-57. (http://dx.doi.org/10.1016/j.susc.2013.12.006)


62. Sa, N.; Lan, W.; Shi, W.; Baker, L.A. Rectification of Ion Current in Nanopipettes by External Substrates, ACS Nano, 2013, 7, 11272–11282. (http://dx.doi.org/10.1021/nn4050485)

61. Morton, K.C.; Tokuhisa, H.; Baker, L.A. Pyrolyzed Carbon Film Diodes, ACS Appl. Mater. Interfaces, 2013, 5, 10673–10681. (http://dx.doi.org/10.1021/am402758y)

60. Yuill, E.M.; Sa. N.; Ray, S.J.; Hieftje, G.M.; Baker, L.A. Electrospray ionization from nanopipette emitters with tip diameters of less than 100 nanometers, Anal. Chem., 2013, 85, 8498–8502. (http://dx.doi.org/10.1021/ac402214g)

59. Thakar, R.; Weber, A.E.; Morris, C.A.; Baker, L. A. Multifunctional Carbon Nanoelectrodes Fabricated by Focused Ion Beam Milling, Analyst, 2013, 138, 5973-5982. (http://dx.doi.org/10.1039/c3an01216f).

58. Zhou, Y.; Chen, C.C.; Weber, A.; Zhou, L.; Baker, L. A.; Hou, J. Potentiometric-Scanning Ion Conductance Microscopy for Measurement at Tight Junctions, Tissue Barriers, 2013, 1, e2558s. (https://www.landesbioscience.com/journals/tissuebarriers/article/25585/).

57. Morris, C.A.; Chen, C.; Ito, T.; Baker, L. A. Local pH Measurement with Scanning Ion Conductance Microscopy, J. Electrochem. Soc., 2013, 160, H430-H435. (http://dx.doi.org/10.1149/2.028308jes).

56. Sa, N.; Baker, L.A. Experiment and Simulation of Ion Transport through Nanopipettes of Well-defined Conical Geometry, J. Electrochem. Soc., 2013, 160, H376-H381.(http://dx.doi.org/10.1149/2.128306jes).

55. Chen, C.; Zhou, Y.; Morris, C.A.; Hou, J.; Baker, L.A. Scanning ion conductance microscopy measurement of paracellular conductance in tight junctions. Anal. Chem., 2013, 85, 3621-3628. (http://dx.doi.org/10.1021/ac303441n).

54. Mathews, K.L.; Budgin, A.M.; Beeram, S.; Joenathan, A.T.; Stein, B.D.; Werner-Zwanziger, U.; Pink, M.; Baker, L.A.; Malumoud, W.E.; Carini, J.P.; Bronstein, L.M. Solid Polymer Electrolytes which Contain Tricoordinate Boron for Enhanced Conductivity and Transference Numbers, J. Mat. Chem. A, 2013, 1, 1108-1116. (http://dx.doi.org/10.1039/C2TA00628F).


53. Thakar, R.; Zakeri, R.; Morris, C.A.; Baker, L.A. Rapid Fabrication of Nanoporous Membrane Arrays and Single-pore Membranes from Parylene C, Anal. Meth., 2012, 4, 4353-4359 (http://dx.doi.org/10.1039/C2AY26074C).

52. Morton, K.C.; Derylo, M.A.; Baker, L.A. Conductive Atomic Force Microscopy Probes from Pyrolyzed Parylene C. J. Electrochem. Soc., 2012, H662-H667. (http://dx.doi.org/10.1149/2.061207jes).

51. Basore, J.; Baker, L. A., Applications of Microelectromagnetic Traps. Anal. Bioanal. Chem., 2012, 403, 2077-2088. (http://dx.doi.org/10.1007/s00216-012-6040-5).

50. Chen, C.; Zhou, Y.; Baker, L.A. Scanning Ion Conductance Microscopy. Annu. Rev. Anal. Chem., 2012, 5, 207-228. (http://dx.doi.org/10.1146/annurev-anchem-062011-143203).

49. Zhou, Y.; Chen, C.; Baker, L. A., Heterogeneity of Multiple-pore Membranes Investigated with Ion Conductance Microscopy. Anal. Chem., 2012, 84, 3003-3009. (http://dx.doi.org/10.1021/ac300257q).

48. Morris, C.A.; Chen, C.; Baker, L.A. Transport of Redox Probes through Single Pores Measured by Scanning Electrochemical-Scanning Ion Conductance Microscopy (SECM-SICM). Analyst, 2012, 137, 2933-2938. (http://dx.doi.org/10.1039/C2AN16178H).

47. Basore, J.R.; Lavrik, N.V.; Baker, L.A. Magnetically Gated Microelectrodes. Chem. Comm., 2012, 48, 1009-1011. (http://dx.doi.org/10.1039/C2CC16938J).


46. Chen, C.; Zhou, Y.; Baker, L.A. Single nanopore investigations with ion conductance microscopy. ACS Nano, 2011, 5, 8404-8411 (http://dx.doi.org/10.1021/nn203205s).

45. Derylo, M.A.; Morton, K.C.; Baker, L.A. Parylene insulated probes for electrochemical atomic force microscopy. Langmuir, 2011, 27, 13925-13930 (http://dx.doi.org/10.1021/la203032u).

44. Bird, S.P; Baker, L.A. An abiotic analogue of the nuclear pore complex hydrogel. Biomacromol., 2011, 12, 3119-3123 (http://dx.doi.org/10.1021/bm200820x).

43. Sa, N.; Baker, L.A. Rectification of nanopores at surfaces. J. Am. Chem. Soc., 2011, 133, 10398-10401. (http://dx.doi.org/10.1021/ja203883q)

42. Morton, K. C.; Morris, C. A.; Derylo, M. A.; Thakar, R.; Baker, L. A. Carbon electrode fabrication from pyrolyzed parylene c. Anal. Chem., 2011, 83, 5447-5452. (http://dx.doi.org/10.1021/ac200885w)

41. Thakar, R.; Wilburn, J.; Baker, L. A. Studies of edge effects with shroud-modified electrodes. Electroanalysis, 2011, 23, 1543-1547. (http://dx.doi.org/10.1002/elan.201100170)

40. Bird, S. P.; Baker, L. A. Biologically modified hydrogels for chemical and biochemical analysis. Analyst, 2011, 136, 3410-3418. (http://dx.doi.org/10.1039/C0AN00871K)

39. Powell, M.; Sa, N.; Davenport, M.; Healy, K.; Vlassiouk, I.; Letant, S.; Baker, L. A.; Siwy, Z. Noise Properties of Rectifying Nanopores. J. Phys. Chem. C., 2011, 115, 8775-8783. (http://dx.doi.org 10.1021/jp2016038)

38. Baker, L. A.; Chen, C. Waves in Microscopy. Nature Chem., 2011, 3, 191-192. (invited commentary) (http://dx.doi.org/ 10.1038/nchem.983)

37. Chen, C., Baker, L.A. Effects of pipette modulation and imaging distances on ion currents measured with Scanning Ion Conductance Microscopy (SICM). Analyst, 2011, 1, 90-97. (http://dx.doi.org/10.1039/C0AN00604A)


36. Niya, S.; Fu, Y.; Baker, L. A. Reversible cobalt ion binding to imidazole-modified nanopipettes. Anal. Chem., 2010, 82, 9963-9966. (http://dx.doi.org/10.1021/ac102619j)

35. Basore, J. R.; Lavrik, N. V.; Baker, L. A. Electromagnetic Micropores: Fabrication and Operation. Langmuir, 2010, 26, 19239-1244. (http://dx.doi.org/10.1021/la103977e)

34. Morris, C.; Friedman, A. K.; Baker, L. A. Applications of Nanopipettes in the Analytical Sciences. Analyst, 2010, 135, 2190-2202. (http://dx.doi.org/10.1039/c0an00156b)

33. Thakar, R.; Baker, L. A. Lithography-free Production of Stamps for Microcontact Printing. Anal. Meth., 2010, 2, 1180-1183. (http://dx.doi.org/10.1039/c0ay00233j)

32. Basore, J. R.; Lavrik, N. V.; Baker, L. A.; Single-Pore membranes Gated by Microelectromagnetic Traps. Adv. Mat., 2010, 2759-2763. (http://dx.doi.org/10.1002/adma.201000566)


31. Petrovykh, D.; Sullivan, J.; Clark, T.; Baker, L. A.; Whitman, L. J. Self-Assembled Monolayers of Alkanethiols on InAs. Langmuir, 2009, 25, 12185-12194. (http:// dx.doi.org/10.1021/la804314j)

30. Fu, Y.; Tokuhisa, H.; Baker, L. A. Nanopore DNA sensors based on dendrimer-modified nanopipettes. Chem. Comm., 2009, 32, 4877-4879. (http://dx.doi.org/10.1039/b910511e)

29. Chen, C.; Derylo, M.; Baker, L. A. Measurement of Ion Currents through Porous Membranes with Scanning Ion Conductance Microscopy. Anal. Chem., 2009, 81, 4742-4751. (http://dx.doi.org/10.1021/ac900065p)

28. Burgan, D. A.; Baker, L. A. Investigating Self-Assembly with Macaroni. J. Chem. Ed. 2009, 86, 704A. (http://dx.doi.org/10.1021/ed086p704A)

27. Tokuhisa, H.; Liu, J.; Omori, K.; Kanesato, M.; Baker, L. A. Efficient Biosensor Interfaces Based on Space-Controlled Self-Assembled Monolayers. Langmuir, 2009, 25, 1633-1637. (http://dx.doi.org/10.1021/la8033148)


26. Laracuente, A. R.; Baker, L. A.; Whitman, L. J. UHV Characterization of Ambient-Dosed Hydrogen-Terminated Si(001). Surf. Sci., 2008, 602, 3-8. (http://dx.doi.org/10.1016/j.susc.2007.09.032)

25. Baker, L. A.; Bird, S. P. A Makeover for Membranes. Nat. Nanotechnol., 2008, 3, 73-74 (invited commentary). (http://dx.doi.org/10.1038/nnano.2008.13)


24. Sexton, L. T.; Horne, L. P. Sherrill, S. S.; Bishop, G. W.; Baker, L. A.; Martin, C. R. Resistive-Pulse Studies of Proteins and Protein/Antibody Complexes Using a Conical Nanotube Sensor. J. Am. Chem. Soc., 2007, 129, 13144-13152. (http://dx.doi.org/10.1021/ja0739943)


23. Harrell, C. C.; Choi, Y.; Baker, L. A.; Siwy, Z.; Martin, C. R. Resistive-Pulse DNA Detection with a Conical Nanopore Sensor. Langmuir, 2006, 22, 10837-10843. (http://dx.doi.org/10.1021/la061234k)

22. Choi, Y.; Baker, L. A.; Hillebrenner, H.; Martin, C. R. Biosensing with conically shaped nanopores and nanotubes. Phys. Chem. Chem. Phys., 2006, 8, 4976-4988. (http://dx.doi.org/10.1039/b607360c)

21. Ervin, E. N.; White, H. S.; Baker, L. A.; Martin, C. R. Alternating Current Impedance Imaging of High-Resistance Membrane Pores Using a Scanning Electrochemical Microscope. Application of Membrane Electrical Shunts to Increase Measurement Sensitivity and Image Contrast. Anal. Chem., 2006, 78, 6535-6541. (http://dx.doi.org/10.1021/ac060577k)

20. Scopece, P.; Baker, L. A.; Ugo, P.; Martin, C. R. Conical Nanopores: Solvent Shaping of Nanopores. Nanotechnology, 2006, 3951-3956. (http://dx.doi.org/10.1088/0957-4484/17/15/057)

19. Baker, L. A.; Choi, Y.; Martin, C. R. Nanotube Membranes for Biomaterials Synthesis, Bioseparations, and Biosensors. Current Nanoscience, 2006, 2, 243-255. (http://www.ingentaconnect.com/content/ben/cnano/2006/00000002/00000003/art00009)


18. Martin, C. R.; Baker, L. A. Expanding the Molecular Electronics Toolbox. Science 2005, 309, 67-68 (invited commentary). (http://dx.doi.org/10.1126/science.1114663)

17. Heins, E. S.; Baker, L. A.; Siwy, Z. S.; Mota, M. O.; Martin, C. R. Effect of Crown Ether on Ion Currents through Synthetic Membranes Containing a Single Conically Shaped Nanopore. J. Phys. Chem. B, 2005, 109, 18400-18407. (http://dx.doi.org/10.1021/jp052341a)

16. Odom, D. J.; Baker, L. A.; Martin, C. R. Solvent-Extraction and Langmuir-Adsorption-Based Transport in Chemically Functionalized Nanopore Membranes. J. Phys. Chem. B, 2005, 109, 20877-20894. (http://dx.doi.org/10.1021/jp0524983)

15. Heins, E. S.; Siwy, Z. S.; Baker, L. A.; Martin, C. R. Detecting Single Porphyrin Molecules in a Conically Shaped Synthetic Nanopore. Nano Lett., 2005, 5, 1824-1829. (http://dx.doi.org/10.1021/nl050925i)

14. Ervin, E. N.; White, H. S.; Baker, L. A. Alternating Current Impedance Imaging of Membranes Pores Using Scanning Electrochemical Microscopy. Anal. Chem., 2005, 77, 5564-5569. (http://dx.doi.org/10.1021/ac050453s)

13. Baker, L. A.; Jin, P.; Martin, C. R. Biomaterials and Biotechnologies Based on Nanotube Membranes. Crit. Rev. Solid State Mater. Sci., 2005, 30, 1-22 (invited review). (http://dx.doi.org/10.1080/10408430500198169)

12. Baker, L. A.; Laracuente, A. R.; Whitman, L. J. Hydrogen Termination Following Cu Depositin on Si(001). Phys. Rev. B, 2005, 71, 153302. (http://dx.doi.org/10.1103/PhysRevB.71.153302)

11. Siwy, Z.; Trofin, L.; Kohli, P.; Baker, L. A.; Trautmann, C.; Martin, C. R. Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. J. Am. Chem. Soc., 2005, 127, 5000-5001. (http://dx.doi.org//10.1021/ja043910f)


10. Kooi, S. E.; Baker, L. A.; Sheehan, P. E.; Whitman, L. J. Dip-Pen Nanolithography of Chemical Templates on Silicon Oxide. Adv. Mater., 2004, 16, 1013-1016. (http://dx.doi.org//10.1021/ja043910f)


9. Oh, S. –K.; Baker, L. A.; Crooks, R. M. Electrochemical Rectification Using Mixed Monolayers of Redox-Active Ferrocenyl Dendrimers and n-Alkanethiols. Langmuir, 2002, 18, 6981-6987. (http://dx.doi.org/10.1021/la020382h)

8. Baker, L. A.; Sun, L.; Crooks, R. M. Synthesis and Catalytic Properties of Imidazole-Functionalized Poly(propylene imine) Dendrimers. Bull. Kor. Chem. Soc., 2002, 23, 647-654 (invited feature article). (http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=JCGMCS_2002_v23n5_647)


7. Baker, L. A.; Crooks, R. M. Photophysical Properties of Pyrene-Functionalized Poly (Propylene Imine) Dendrimers. Macromolecules, 2000, 33, 9034-9039. (http://dx.doi.org/10.1021/ma001379c)


6. Baker, L. A.; Zamborini, F. P.; Sun, L.; Crooks, R. M. Dendrimer-Mediated Adhesion between Vapor-Deposited Gold and Glass or Si Wafers. Anal. Chem., 1999, 71, 4403-4406. (http://dx.doi.org/10.1021/ac990495e)

5. Smith, D. D.; Yoon, Y.; Boyd, R. W.; Campbell, J. K.; Baker, L. A.; Crooks, R. M.; George, M. z-Scan Measurement of the Nonlinear Absorption of a Thin Gold Film. J. Appl. Phys., 1999, 86, 6200-6205. (http://dx.doi.org/10.1063/1.371675)

4. Garcia, M. E.; Baker, L. A.; Crooks, R. M. Preparation and Characterization of Dendrimer-Gold Colloid Nanocomposites. Anal. Chem., 1999, 71, 256-258. (http://dx.doi.org/10.1021/ac980588g)


3. Hierlemann, A.; Campbell, J. K.; Baker, L. A.; Crooks, R. M.; Ricco, A. J. Structural Distortion of Dendrimers on Gold Surfaces: A Tapping Mode AFM Investigation. J. Am. Chem. Soc., 1998, 120, 5323-5324. (http://dx.doi.org/10.1021/ja974283f)

2. Tokuhisa, H.; Zhao, M. Q.; Baker, L. A.; Phan, V. T.; Dermody, D. L.; Garcia, M. E.; Peez, R. F.; Crooks, R. M.; Mayer, T. M. Preparation and Characterization of Dendrimer Monolayers and Dendrimer-Alkanethiol Mixed Monolayers Adsorbed to Gold. J. Am. Chem. Soc., 1998, 120, 4492-4501. (http://dx.doi.org/10.1021/ja9742904)

1. Baker, L. A.; Su, S. J. An ab initio Molecular Orbital Study of the Reaction NH2+NO → H2+N2O. Chem. Phys., 1998, 228, 9-16. (http://dx.doi.org/10.1016/S0301-0104(97)00319-4)