Verb learning is difficult for children (Gentner, 1982). Part of this difficulty stems from children’s bias to associate a novel verb not only with the action it represents, but with the particular object with which it is learned (Kersten & Smith, 2002). Here, we investigate how asking children to perform or observe actions on objects versus gestures off objects while learning novel verbs differentially impacts learning (Study 1), as well as generalization of verbs to new contexts and retention of verbs across time (Study 2). Based on previous literature, we predict:

1. Children will learn novel verbs more quickly through action experience, but will be more likely to extend verbs after gesture experience (Novack et al., 2014).
2. Children will learn novel verbs more effectively through experience producing actions or gestures, rather than observing these movements (James, 2010).

Method

Participants
- Study 1: 48 children (M = 58.3 mo, SD = 3.7 mo)
- Study 2: 27 children (M = 57.2 mo, SD = 4.9 mo)

Procedure

Training
Children were randomly assigned to learn novel verbs (Study 1: 8 verbs; Study 2: 4 verbs) through either action or gesture experience. Regardless of condition, children learned half of the verbs through doing movements themselves, and half through seeing an experimenter’s movements.

Assessment

Study 1
Children’s knowledge of verbs was assessed after each of 4 training rounds. The 4 toys being used during training were placed in front of the child and he or she was asked to show the experimenter each of the novel verbs (e.g., “Can you show me ratching?”)

Study 2
Children received training rounds until they could correctly recall the novel verbs. Children then completed an alternative forced choice task to assess generalization ability. Two videos were displayed and the child was asked to point to the video that showed a prompted verb (e.g., “See how 2 movements are happening? Can you point to which one shows ratching?”)

References

Acknowledgements

The authors would like to thank research assistants Emily Kubota and Jessica Jankowski for their help collecting and coding data, Jeanne Marie Heali for assistance in stimuli creation, families of children who participated, and preschools and daycares who allowed us to conduct our studies at their centers. This project is supported by a collaborative grant from the National Science Foundation (1422224) to PIs Susan Goldin-Meadow (University of Chicago) and Karin H. James (Indiana University).