Design, Prototype, & Build: The Engineering Technology Capstone Experience

Mr. Bill Hemphill
Engineering, Engineering Technology & Surveying
ETSU College of Business & Technology
East Tennessee State University

ASEE Conference for Industry and Education Collaboration (CIEC)
Session #ETD 325—Best Practices for Engineering Technology Capstone Projects
St. Antonio, TX Feb. 7, 2018
What are Design, Prototype, & Build classes?

• They are variants of two HIP-types:
 o Project-Based Learning
 o Capstone/Milestone Experiences

• “Real world” learning opportunities
 o Engaging, hands-on, open-ended projects
 o Poorly defined/articulated at front end

• Lots of Self-Direction in Project Choice
 o Student buy-in => Engagement
Engineering Technology (ET) Multiple Design/Prototype/Build Classes:

• ENTC 3710—Manual CNC Programming
• ENTC 3600—Manuf. Technologies (AKA “Guitar Building”)

• ENTC 4600—Tech. Practicum (Dept)
• ENTC 4357—CIM Apps (Programmatic)
ENTC 4357—CIM Apps Capstone Class

- Programmatic capstone (3 ET Concentrations)
 - Manufacturing Engineering Technology (128 cr/ABET)
 - Product Development (128 cr) &
 - Industrial Technology (120 cr)

- Multidisciplinary (MGMT 4357)
 - Business majors (mostly from MGMT/MKGT areas)

- Two dedicated faculty from each discipline
 - Hemphill – ENTC (since late 1990s)
ENTC 4357—CIM Apps Programmatic Capstone Class

• The first ENTC course to adopt the “Design, Prototype, Build” project model
• Team-based, Student-lead
• Deliverables:
 o Product—Min: 20 units plus group members
 o Business plan & FULL product build & tooling data
 o Individual: End of semester paper (The Goal)
ENTC 4357—CIM Apps Capstone Class

• Multi-step Process:
 o Student teams determine, design, & prototype product ideas for competition
 o Students/Faculty vote & product teams realigned
 o Product refinement
 o Tooling design, fabricated, & tested
 o Limited “pilot production” of deliverable parts
ENTC 4357—CIM Apps
Capstone Class

“My job is to manage the chaos & then add to it”

• Features & Options

• Continuous, Incremental Change
 o Watch for feature creep & sub-optimization:
 ▪ “Better is the enemy of good enough”
 ▪ “Don’t get bit by the high-tech dumba**.”
ENTC 4357—CIM Apps Capstone Class

• Prerequisites:
 o CADD
 o CAM/CNC
 o Principles of Electronics
 o Project Scheduling
 o Other classes including Supervision & Safety

• Course is really about **PROCESS** not part.
 “The meaning is in the search.”
• For ETs: Two primary topic areas:
 o Engineering Documentation Configuration Mgmt
 ▪ Understand, master, & control engineering change
 ▪ Multiple revisions
 o Use of standards and best practices
 Google "standards CADD CAM CNC Layer Naming"
“Named Layers”
Embedded Design & Manuf. Data

Examples:

CPB_0500-Cavity_Deep ... Centerline (tool) Path, Bottom side, ½” DIA cutter for the deep cavity pocket
CPB_TL_0500-T_Nut_Flush_Rough Centerline (tool) Path, Bottom side, Tooling ½” DIA cutter for the T-Nut rim (Flush mount pocket); Roughing pass
CPT_0188-Hole_Vol_Tone_Pot ... Centerline (tool) Path, Top side, 3/16” DIA cutter for THRU holes for the Volume & Tone Pots
CPZ-Cover-Lucy_4-Vector_Cut .. Centerline Path, Laser; Cover for a model 4 Lucy (semi-hollow electric guitar), Vector Cut data
EDB-Cavity-Deep .. Edge, Bottom side of the Deep Cavity pocket
EL-Humbucker_Generic ... Electronics, Generic Humbucker
EL-Switch-6_Position_Rotary-StewMac Electronics, 6-Position Rotary Switch, (Stewart Mac Donald, vendor)
REF-Fret_21_of_25500_String_Length Reference data: Location of 21st Fret of 25-½” String Length
National STEM Guitars Project &
ETSU’s ENTC 3600 “Milestone” Class

• Best “STEM Engagement” Idea Ever
• Design/prototype/build custom electric guitars
• Very “press” and social media-friendly
 ○ Great for recruiting, outreach & “branding”

www.Facebook.com/ETSUGuitars
Examples of Student Work

[Images of various woodworking projects and a wind chime]
Examples of Student Work

Features

• Direct Wall Mount
• Magnetic Wall Mount
• Magnetic Surface Mount Option
• Strong magnet to catch bottle caps (approximately 20)
DPB Classes: Lessons Learned

- All of these particular classes are
 - Memorial learning experiences (students)
 - Pedagogically sound (employer & alumni feedback)
 - Resource hogs:
 - State of the market equipment (i.e. cost money)
 - Real raw materials (i.e. cost money)
 - Huge out-of-classroom time commitments (students and faculty)
Departmental Fee (Program Fee)

• Engineering Technology students pay $60/credit hour programmatic fee

• Department Chair & Program Coordinators coordinate spending
 o “Procard” (Visa): raw materials & consumables
 o Chair’s E-mail: “Stop spending. Immediately.”
“Rotating Equipment”

• Our equipment is dangerous
 o Serious liability issues
• Training is required
• 100% oversight is required
 o Faculty, GAs, and appropriate staff
DPB Class Implementation—Negative Issues

• **All classes use the same equipment**
 • One CNC router ($55K, 2003)
 • One abrasive waterjet ($220K, 2011)
 • One 75W CO$_2$ laser engraver/cutter ($75K, 2014)

• **Difficulty scheduling & coordinating in-class & out-of-class access (multiple majors)**
DPB Class Implementation—Negative Issues

- Multiple “Single Points of Failure”
- All major equipment is “mission critical”
- Tremendous amount of activity and guidance outside of class
- Custom designs require custom feedback
ENTC 4357—CIM Apps
Negative Issues

- Multiple teams vying for equipment access ALL. THE. TIME.
- Secure storage for raw materials, WIP, & finished goods.
- Cost sharing required between ENTC Fee and Dean’s office (MGMT).
Summary

• Design, Prototype, Build HIP classes are relevant, meaningful & desired by Engineering Technology students and their potential employers.
• Despite the real & significant costs, the rewards of the DPB HIP classes are well worth the effort and financial investment.
Questions?
Contact Information

Mr. Bill Hemphill
East Tennessee State University
Engineering Technology

hemphill@etsu.edu
http://www.Facebook.com/ETSUGuitars