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Abstract

Meaning is a fundamental component of nearly all aspects of human cognition, but formal
models of semantic memory have classically lagged behind many other areas of cognition.
However, computational models of semantic memory have seen a surge of progress in the
last two decades, advancing our knowledge of how meaning is constructed from
experience, how knowledge is represented and used, and what processes are likely to be
culprit in disorders characterized by semantic impairment. This chapter provides an
overview of several recent clusters of models and trends in the literature, including modern
connectionist and distributional models of semantic memory, and contemporary advances
in grounding semantic models with perceptual information and models of compositional
semantics. Several common lessons have emerged from both the connectionist and
distributional literatures, and we attempt to synthesize these themes to better focus future
developments in semantic modeling.
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Introduction
Meaning is simultaneously the most obvious

feature of memory—we can all compute it rapidly
and automatically—and the most mysterious aspect
to study. In comparison to many areas of cogni-
tion, relatively little is known about how humans
compute meaning from experience. Nonetheless,
a mechanistic account of semantics is an essential
component of all major theories of language com-
prehension, reading, memory, and categorization.
Semantic memory is necessary for us to construct
meaning from otherwise meaningless words and
utterances, to recognize objects, and to interact with
the world in a knowledge-based manner.

Semantic memory typically refers to memory for
word meanings, facts, concepts, and general world
knowledge. For example, you know that a panther
is a jungle cat, is more like a tiger than a corgi,
and you know better than to try to pet one. The

two common types of semantic information are
conceptual and propositional knowledge. A concept
is a mental representation of something, such as a
panther, and knowledge of its similarity to other
concepts. A proposition is a mental representation of
conceptual relations that may be evaluated to have
a truth value, for example, that a panther is a jungle
cat, or has four legs and knowledge that panthers do
not have gills.

In Tulving’s (1973) classic modular taxonomy,
declarative memory was subdivided into episodic
and semantic memory, the former containing
memory for autobiographical events, and the latter
dedicated to generalized memory not linked to a
specific event. Although you may have a specific
autobiographical memory of the last time you saw a
panther at the zoo, you do not have a specific mem-
ory of when you learned that a panther was a jungle
cat, was black, or how it is similar to a tiger. In this
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sense, semantic memory gained a reputation as the
more miscellaneous and mysterious of the memory
systems. Although episodic memory could be stud-
ied with experimental tasks such as list learning and
could be measured quantitatively by counting the
number of items correctly recognized or recalled,
semantic memory researchers focused more on tasks
such as similarity judgments, proposition verifica-
tion, semantic priming, and free association. Unlike
episodic memory, there existed no mechanistic ac-
count of how semantic memory was constructed as
a function of experience. However, the field has ad-
vanced a considerable amount in the past 25 years.

A scan of the contemporary literature reveals
a large number of formal models that aim to
understand the mechanisms that humans use to
construct semantic memory from repeated episodic
experience. Modern semantic models have made
truly impressive progress at elucidating how humans
learn and represent semantic information, how
semantic memory is recruited and used in cognitive
processing, and even how complex functions like
semantic composition may be accomplished by
relatively simple cognitive mechanisms. Many of
the current advances build from classic ideas, but
only relatively recently has computational hardware
advanced to a scale where we can actually simulate
and evaluate these systems. Advances in semantic
modeling also are indebted to excellent interdis-
ciplinary collaboration, building in part on de-
velopments in computational linguistics, machine
learning, and information retrieval.

The goal of this chapter is to provide an
overview of recent advances in models of semantic
memory. We will first provide a brief synopsis of
classic models and themes in semantic memory
research, but will then focus on computational
developments. In addition, the focus of the chapter
is on models that have a formal instantiation that
may be tested quantitatively. Hence, although there
are several exciting new developments in verbal
conceptual theory (e.g., Louwerse’s (2011) Symbol
Interdependency Hypothesis), we focus exclusively
on models that are explicitly expressed by computer
code or mathematical expressions. In addition, the
chapter assumes a sufficient understanding of the
empirical literature on semantic memory. For an
overview of contemporary experimental findings,
we refer the reader to a companion chapter on
semantic memory by McRae and Jones (2014).

There are several potential ways to organize a
review of the literature, and no single structure
will satisfy all theorists. We opt here to follow two

major clusters of cognitive models that have been
prominent: distributional models and connectionist
models. The division may also be broadly thought
of as a division between models that specify how
concepts are learned from statistical experience
(distributional models), and models that specify
how propositions are learned or that use conceptual
representations in cognitive processes (connection-
ist models). Obviously, there are exceptions in both
clusters that cross over, but the two literatures
have had different foci. Next, we summarize
some classic models of semantic memory and
common theoretical debates that have extended to
the contemporary models. Following the historical
trends in the literature, we then discuss advances
in connectionist models, followed by distributional
models. Finally, we discuss hybrid approaches and
new directions in models of grounded semantics
and compositional semantics, and are attempt to
synthesize common lessons that have been learned
across the literature.

Classic Models and Themes in Semantic
Memory Research

The three classic models of semantic memory
most commonly discussed are semantic networks,
feature-list models, and spatial models. These
three models deserve mention here, both because
they have each seen considerable attention in the
literature, and because features of each have clearly
evolved into modern computational models.

The semantic network has traditionally been one
of the most common theoretical frameworks used
to understand the structure of semantic memory.
Collins and Quillian (1969) originally proposed a
hierarchical model of semantic memory in which
concepts were nodes and propositions were labeled
links (e.g., the nodes for dog and animal were
connected via an “isa” link). The superordinate
and subordinate structure of the links produced
a hierarchical tree structure (animals were divided
into birds, fish, etc., and birds were further
divided into robin, sparrow, etc.), and allowed the
model to explain both conceptual and propositional
knowledge within a single framework. Accessing
knowledge required traversal of the tree to the
critical branch, and the model was successful in
this manner of explaining early sentence verification
data from humans (e.g., the speed to verify that “a
canary can sing”). A later version of the semantic
network model proposed by Collins and Loftus
(1975) deemphasized the hierarchical nature of
the network in favor of the process of spreading
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activation through all network links simultaneously
to account for semantic priming phenomena—in
particular, the ability to produce fast negative
responses. Early semantic networks can be seen as
clear predecessors to several modern connectionist
models, and features of them can also be seen in
modern probabilistic and graphical models as well.

A competing model was the feature-comparison
model of Rips, Shoben, and Smith (1973). In
this model, a word’s meaning is encoded as a list
of binary descriptive features, which were heavily
tied to the word’s perceptual referent. For example,
the <has_wings> feature would be turned on for
a robin, but off for a beagle. Smith, Shoben,
and Rips (1974) proposed two types of semantic
features: defining features that all concepts have,
and characteristic features that are typical of the
concept, but are not present in all cases. For
example, all birds have wings, but not all birds
fly. Processing in the model was accomplished
by computing the feature overlap between any
two concepts, and the features were allowed to
vary in their contribution of importance to the
concept, although how particular features came
to be and how they were ranked was not fully
specified. Modern versions of feature-list models
use aggregate data collected from human raters in
property generation tasks (e.g., McRae, de Sa, &
Seidenberg, 1997).

A third type was the spatial model, which emer-
ged from Osgood’s (1952, 1971) early attempts to
empirically derive semantic features using semantic
differential ratings. Osgood had humans rate words
on a Likert scale against a set of polar opposites (e.g.,
rough-smooth, heavy-light), and a word’s meaning
was then computed as a coordinate in a multidi-
mensional semantic space. Distance between words
in the space was proposed as a process for semantic
comparison.1 Featural and spatial representations
have been contrasted as models of human similarity
judgments (e.g., Tversky & Gati, 1982), and
the same contrast applies to spatial versus featural
representations of semantic representations. We will
see the feature versus space debate emerge again
with modern distributional models. Early spatial
models can be seen as predecessors of modern
semantic space models of distributional semantics
(but co-occurrences in text corpora are used as the
data on which the space is constructed rather than
human ratings).

One issue with all three of these classic models
is that none ever did actually learn anything. Each
model relied on representations that were hand

coded based on the theorist’s intuition (or subjective
ratings) of semantic structure, but none formally
specified the cognitive mechanisms by which the
representations were constructed. As Hummel and
Holyoak (2003) have noted, this type of intuitive
modeling may have serious consequences: “The
problem of hand-coded representations is the most
serious problem facing computational modeling as a
scientific enterprise. All models are sensitive to their
representation, so the choice of representation is
among the most powerful wildcards at the modeler’s
disposal” (p. 247). As we will see later in the
chapter, this is exactly the concern that modern
distributional models address.

Connectionist Models of Semantic Memory
Connectionist models were among the first to

specify how semantic representations might come
to be learned, and how those representations might
interact with other cognitive processes. Modern
connectionism is a framework used to model
mental and behavioral phenomena as an emergent
process—one that arises out the behavior of net-
works of simple interconnected units (Rumelhart,
McClelland, & the PDP Group, 1986). Connec-
tionism is a very broad enterprise. Connectionist
models can be used to explicitly model the inter-
action of different brain regions or neural processes
(O’Reilly, Munakata, Frank, Hazy, & Contributors,
2012) or they can be used to model cognition
and behavior from a “neurally inspired” perspective,
which values the way in which the models exhibit
parallel processing, interactivity, and emergentism
(Rumelhart et al., 1986; Rogers & McClelland,
2006). Connectionist models have made a very
large contribution to simulating and understanding
the dynamic nature of semantic knowledge and how
semantic knowledge interacts with other cognitive
processes.

Connectionist models represent knowledge in
terms of weighted connections between intercon-
nected units. A model’s set of units, its connections,
and how they are organized is called the model’s
architecture. Research involving connectionist mod-
els has studied a wide range of architectures, but
most connectionist models share a few common
features. Most models have at least one set of units
designated as input units, as well as at least one
set of units designated as target or output units.
Most connectionist models also have one or more
sets of intervening units between the input and
output units, which are often referred to as hidden
layers.
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A connectionist model represents knowledge in
terms of the strength of the weighted connections
between units. Activation is fed into the input
units, and that activation in turn activates (or
suppresses) the units to which the input units are
connected, as a function of the weighted connection
strength between the units. Activation eventually
propagates to the output units, with one important
question of interest being: What output units will
a connectionist model activate given a particular
input? In this sense, the knowledge in connectionist
models is typically thought of as representing the
function or relationship between a set of inputs and
a set of outputs. Connectionist models should not,
however, be confused with models that map simple
stimulus-response relationships; The hidden layers
between input and output layers in connectionist
networks allow them to learn very complex internal
representations. Models with an architecture such
as the one just described, where activation flows
from input units to hidden units to output units,
are typically referred to as feed-forward networks.

A key aspect of connectionist models is that
they are often used to study the learning process
itself. Typically, the weights between units in a
connectionist network are initialized to a random
state. The network is then provided with a training
phase, in which the model is provided with
inputs (typically involving some sort of expected
input from the environment), and the weights are
adjusted as a function of the particular inputs the
network received. Learning (adjusting the weights)
is accomplished in either an unsupervised or a super-
vised fashion. In unsupervised learning, weights are
typically adjusted according some sort of associative
principle, such as Hebbian learning (Grossberg,
1976; Hebb, 1946), where weights between units
are increased the more often the two units are active
at the same time. In supervised learning, weights
are adjusted by observing which output units the
network activated given a particular input pattern,
and comparing that to some goal or target output
given those inputs. The weights are then adjusted
so as to reduce the amount of error the network
makes in terms of its activation of the “correct” and
“incorrect” outputs (Kohonen, 1982; Rosenblatt,
1959; Rumelhart, Hinton, & Williams, 1986;
Widrow & Hoff, 1960).

Rumelhart Networks
An illustrative example of a connectionist model

of semantic memory (shown in Figure 11. 1a) was
first presented by Rumelhart & Todd (1993) and

studied in detail by Rogers and McClelland (2006).
This network has two sets of input units: (1) a set
of units meant to represent words or concepts (e.g.,
robin, canary, sunfish, etc.), and (2) a set of units
meant to represent different types of relations (e.g.,
is-a, can, has, etc.). The network learns to associate
conjunctions of those inputs (e.g., robin+can) with
outputs representing semantic features (e.g. fly,
move, sing, grow, for robin+can). The model
accomplishes this using supervised learning, having
robin+can activated as inputs, observing what a
randomly initialized version of the model produces
as an output, and then adjusting the weights so as
to make the activation of the correct outputs more
likely. The model is not merely learning associations
between inputs and outputs; in the Rumelhart
network, the inputs and outputs are mediated by
two sets of hidden units, which allow the network
to learn complex internal representations for each
input.

A critical property of connectionist architectures
using hidden layers is that the same hidden units are
being used to create internal representations for all
possible inputs. In the Rogers et al. example, robin,
oak, salmon, and daisy all use the same hidden units;
what differentiates their internal representations is
that they instantiate different distributed patterns
of activation. But because the network is using
overlapping distributed representations for all the
concepts, this means that during the process of
learning, changing the connection weights as a
result of learning about one input could potentially
affect how the network represents all other items.
When the network learns an internal representation
(i.e., hidden unit activation state) for the input
robin+can, and learns to associate the outputs
sing and fly with that internal representation,
this will mean that other inputs whose internal
representations are similar to robin (i.e., have similar
hidden unit activation states, such as canary) will
also become more associated with sing and fly. This
provides these networks with a natural mechanism
for categorization, generalization, and property
induction. The behavior allows researchers using
connectionist models to study how these networks
categorize, and to compare the predictions of the
model to human behaviors.

Rogers and McClelland (2006) extensively stud-
ied the behavior of the Rumelhart networks, and
found that the model provides an elegant account of
a number of aspects of human concept acquisition
and representation. For example, they found that
as the model acquires concepts through increasing
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amounts of experience, the internal representations
for the concepts show progressive differentiation,
learning broader distinctions first and more fine-
grained distinctions later, similar to the distinctions
children show (Mandler, Bauer, & MoDonough,
1991). In the model, this happens because the
network is essentially performing something akin
to a principal component analysis, learning the
different features in the order of the amount of
variance in the input that they explain. Rogers
and McClelland argued that this architecture,
which combines simple learning principles with
the expected structure of the environment, can
be used to understand how certain features (those
that have rich covariational structure) become
the features that organize categories, and how
conceptual structure can become reorganized over
the course of concept acquisition. The general (and
somewhat controversial) conclusion that Rogers
and McClelland draw from their study of this
model is that a number of properties of the
semantic system, such as the taxonomic structure
of categories (Bower, 1970) and role of causal
knowledge in semantic reasoning (Keil, 1989),
can be explained as an emergent consequence of
simple learning mechanisms combined with the
expected structure of the environment, and that
these structural factors do not necessarily need to
be explicitly built into models of semantic memory.

Feed-forward connectionist models have only
been used in a limited fashion to study the actual
structure of semantic memory. However, these
models have been used extensively to study how
semantic structure interacts with various other
cognitive processes. For example, feed-forward
models have been used to simulate and understand
the word learning process (Gasser & Smith, 1998;
Regier, 2005). These word-learning models have
been used to show that many details about the
representation of word meanings (like hierarchical
structure), learning constraints (such as mutual
exclusivity and shape bias), and empirical phenom-
ena (such as the vocabulary spurt that children
show around two years of age) emerge naturally
from the structure of environment with a simple
learning algorithm, and do not need to be explicitly
built into the model. Feed-forward models have
also been used to model consequences of brain
damage (Farah & McClelland, 1991; Rogers
et al., 2004; Tyler, Durrant-Peatfield, Levy, Voice,
& Moss, 2000), Alzheimer’s disease (Chan, Salmon,
& Butters, 1998), schizophrenia (Braver, Barch,
& Cohen, 1999; Cohen and Servan-Schreiber,

1992; Nestor et al., 1998), and a number of other
disorders that involve impairments to semantic
memory (see Aakerlund & Hemmingsen, 1998,
for a review). These models typically study brain
disorders by lesioning the network (i.e., removing
units or connections), or otherwise causing the
network to behave in suboptimal ways, and then
studying the consequences of this disruption. Con-
nectionist models provide accounts of a wide range
of impairments and disorders, and have also been
used to show that many semantic consequences of
impairments and disorders, such as the selective
impairment of certain categories, can be explained
in terms of emergent processes deriving from
the interaction of low-level features, rather than
requiring explicit instantiations in the model (such
as creating modular memory systems for living and
nonliving things, see McRae and Cree, 2002, for a
review).

Dynamic Attractor Networks
In addition to feed-forward models such as

the Rumelhart network, a considerable amount
of semantic memory research has explored the
use of dynamical connectionist models (Hopfield,
1982). A connectionist model becomes a dynamical
model when its architecture involves some sort of
bi-directionality, feedback, or recurrent connectiv-
ity. Dynamical networks allow investigations into
how the activation of representations may change
over time, as well as how semantic representations
interact with other cognitive processes in an online
fashion.

For example, Figure 11.2a shows McLeod,
Shallice, and Plaut’s (2000) dynamical network for
pronouncing printed words. The network has a
layer of units for encoding orthographic representa-
tions (grapheme units), a layer of units for encoding
phonological representations (phoneme units), and
an intervening layer between the two that encodes
the words semantic features (sememe units), as well
as additional layers of hidden units between each
of these layers. Critically, the activation in this
network is allowed to flow in both directions, from
phonemes to sememes to graphemes, and from
graphemes to sememes to phonemes. The network
also has recurrent connections (the loops in Figure
11.2a) connecting the grapheme, sememe, and
phoneme layers to themselves. The combination
of the bidirectional connections and recurrent
connectivity allows the McLeod et al. (2000)
network to establish a dynamical system where
the activation at the various levels will feed back
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Fig. 11.2 (left). A prototypical example of a semantic attractor network, from McLeod, Shallice, & Plaut (2000).
Fig. 11.2b (right). An example of the network’s behavior, simulating the experience of a person reading the word “dog”. The weights
of the network have created a number of attractor spaces, determined by words’ orthographic, phonological, and semantic similarity.
Disrupting the input (such as presenting the participant with a stimulus mask) at different stages has different effects. Early masking
leads to a higher likelihood of falling into the wrong perceptual attractor (LOG instead of DOG). Later masking leads to a higher
likelihood of falling into the wrong semantic attractor (CAT instead of DOG).
(left) After McLeod, Shallice, and Plaut (2000), Cognition c©Elsevier Inc.

and forth eventually settling into a stable attractor
state. The result is that these attractor networks
can allow multiple constraints (e.g. the weights
that establish the network’s knowledge of the links
between orthography and semantics, and semantics
and phonology) to compete, eventually settling into
a state that satisfies the most likely constraints for a
given input.

As an illustration of how this works, consider an
example using the McLeod et al. network, shown in
Figure 11.2b. Here, the network is simulating the
experience of a person reading words. The figure
depicts a three-dimensional space, where the vertical
direction (labeled “energy”) represents the stability
of the network’s current state (versus its likelihood
to switch to a new state) as activity circulates
through the network. In an attractor network, only
a small number of possible states are stable. These
stable states are determined by the network’s knowl-
edge about the likelihood of certain orthographic,
phonological, and semantic states to co-occur. And
given any input, the network will eventually settle
into one of these stable states. For example, if the
network receives a clear case of the printed word
DOG as input, and this input is not disrupted, the
network will quickly settle into the corresponding
DOG state in its orthographic, phonological,
and semantic layers. Alternatively, if the network
received a nonword like DAG as an input, it
would eventually settle into a neighboring attractor
state (like DOG or DIG or DAD). Similarly, if
the network receives DOG as an input, but this

input is impoverished (e.g., noisy, with errors in
the input signal), or disrupted (simulating masking
such as might happen in a psychology experiment),
this can affect the network’s ability to settle into
the correct attractor. In a manner corresponding
well to the disruption effects that people show in
behavioral experiments, an early disruption (before
the network has had a chance to settle into an
orthographic attractor basin) can lead the network
to make a form-based error (settling into the LOG
basin instead). A later disruption—happening after
the orthographic layer has settled into its basin but
before the semantic layer has done so—can lead the
network to make a semantic error, activating a code
of semantic features corresponding to CAT.

Attractor networks have been used to study
a very wide range of semantic-memory related
phenomena. Rumelhart et al. (1986) used an
attractor network to show how schemas (e.g., one’s
representations for different rooms) can emerge
naturally out of the dynamics of co-occurrence
of lower-level objects (e.g., items in the rooms),
without needing to build explicit schema repre-
sentations into the model (see also Botvinick &
Plaut, 2004). Like the McLeod example already
described, attractor networks have been extensively
used to study how semantic memory affects lex-
ical access (Harm & Seidenberg, 2004; McLeod
et al., 2000) as well as to model semantic priming
(Cree, McRae, & McNorgan, 1999; McRae, et al.,
1997; Plaut & Booth, 2000). Dynamical models
have also been used to study the organization
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and development of the child lexicon (Horst,
McMurray, & Samuelson, 2006; Li, Zhao, &
MacWhinney, 2007), the bilingual lexicon (Li,
2009), and children’s causal reasoning using seman-
tic knowledge (McClelland & Thompson, 2007),
and how lexical development differs in typical and
atypical developmental circumstances (Thomas &
Karmiloff-Smith, 2003).

Dynamical connectionist models have also sim-
ulated various ways that semantic knowledge
impacts and interacts with sentence production
and comprehension, including how semantic con-
straints impact the grammaticality of sentences
(Allen & Seidenberg, 1999; Dell, Chang, & Griffin,
1999; McClelland, St. John, & Taraban, 1989;
Tabor & Tanenhaus, 1999; Taraban & McClelland,
1988), and how semantic knowledge assists in the
learning of linguistic structure (Borovsky & Elman,
2006; Chang, Dell, & Bock, 2006; Rohde & Plaut,
2000). As with feed-forward models, dynamical
models have been also used to extensively study
many developmental and brain disorders such as
dyslexia and brain damage (Devlin, Gonnerman,
Anderson, & Seldenberg, 1998; Hinton & Shallice,
1991; Kinder & Shanks, 2003; Lambon Ralph,
MoClelland, Patterson, Galton, & Hodges, 2001;
Plaut, 1999, 2002).

Distributional Models of Semantic Memory
There are now a large number of computational

models in the literature that may be classified as
distributional. Other terms commonly used to refer
to these models are corpus-based, semantic-space,
or co-occurrence models, but distributional is the
most appropriate term common to all the models in
that it fairly describes the environmental structure
all learning mechanisms capitalize on (i.e., not all
are truly spatial models, and most do not capitalize
merely on direct co-occurrences). The various
models differ greatly in the cognitive mechanisms
they posit that humans use to construct semantic
representations, ranging from Hebbian learning to
probabilistic inference. But the unifying theme
common to all these models is that they hypothesize
a formal cognitive mechanism to learn semantics
from repeated episodic experience in the linguistic
environment (typically a text corpus).

The driving theory behind modern distribu-
tional models of semantic representation is cer-
tainly not a new one, and dates back at least
to Wittgenstein (1953). The most famous and
commonly used phrase to summarize the approach
is Firth’s (1957) “you shall know a word by the

company it keeps,” and this idea was further
developed by Harris (1970) into the distributional
hypothesis of contextual overlap. For example, robin
and egg may become related because they tend to
co-occur frequently with each other. In contrast,
robin and sparrow become related because they
are frequently used in similar contexts (with the
same set of words), even if they rarely co-occur
directly. Ostrich may be less related to robin due to a
lower overlap of their contexts compared to sparrow,
and stapler is likely to have very little contextual
overlap with robin. Formal models of distributional
semantics differ in their learning mechanisms, but
they all have the same overall goal of formalizing
the construction of semantic representations from
statistical redundancies in language.

A taxonomy of distributional models is very
difficult now given the large number of them and
range of learning mechanisms. The models can be
loosely clustered based on their notion of context
(e.g., documents, words, time, etc.), or the learning
mechanism they employ. We opt for the latter
organization here, and just present some standard
exemplars of each model type; an exhaustive
description of all models is beyond the scope of this
chapter (for reviews, see Bullinaria & Levy, 2007;
Riordan & Jones, 2011; Turney & Pantel, 2010).

Latent Semantic Analysis
Perhaps the best-known distributional model is

Latent Semantic Analysis (LSA; Landauer & Du-
mais, 1997). LSA begins with a term-by-document
frequency matrix of a text corpus, in which each row
vector is a word’s frequency distribution over docu-
ments. A document is simply a “bag-of-words” in
which transitional information is not represented.
Next, a word’s row vector is transformed by its
log frequency in the document and its information
entropy over documents (−∑

p(x) log2p(x); cf.
Salton & McGill, 1983). Finally, the matrix
is factorized using singular-value decomposition
(SVD) into three component matrices, U, , and V.
The U matrix represents the orthonormal basis for
a space in which each word is a point, V represents
an analogous orthonormal document space, and
 is a diagonal matrix of singular values (cf. an
eigenvector) weighing dimensions in the space (see
Landauer, McNamara, Dennis, & Kintsch, 2007
for a tutorial). The original transformed term-by-
document matrix, M, may be reconstructed as:

M =UV T , (1)

where V T is the transpose of V.
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More commonly, only the top N singular
values of  are retained, where N is usually
around 300. This dimension reduction allows an
approximation of the original “episodic” matrix to
be reconstructed, and has the effect of bringing out
higher-order statistical relationships among words
more sophisticated than mere direct co-occurrence.
A word’s semantic representation is then a pattern
across the N latent semantic dimensions, and
is often projected as a point in N -dimensional
semantic space (cf. Osgood, 1952). Even though
two words (e.g., boat and ship) might have had
zero similarity in the original M matrix, indicating
that they do not co-occur in the same documents,
they may nonetheless be proximal in the reduced
space reflecting their deeper semantic similarity
(contextual similarity but not necessarily contextual
overlap).

The application of SVD in LSA is quite similar
to common uses of principal component analysis
(a type of SVD) in questionnaire research. Given
a pattern of observable scale responses to items
on a personality questionnaire, for example, the
theorist may apply SVD to infer a small number of
latent components (e.g., extroversion, neuroticism)
that are causing the larger number of observable
response patterns. Similarly, LSA uses SVD to infer
a small number of latent semantic components in
language that explain the pattern of observable word
co-occurrences across contexts. In this sense, LSA
was the first model to successfully specify a function
mapping semantic memory to episodic context.
Landauer and Dumais (1997) were careful not to
claim that humans use exactly SVD as a learning
mechanism, but rather that the brain uses some
dimensional reduction mechanism akin to SVD
to create abstract semantic representations from
experience.

The semantic representations constructed by
LSA have demonstrated remarkable success at
simulating a wide range of human behavioral
data, including judgments of semantic similarity
(Landauer & Dumais, 1997), word categorization
(Laham, 2000), and discourse comprehension
(Kintsch, 1998), and the model has also been
applied to the automated scoring of essay quality
(Landauer, Lahma, Rehder, & Schreiner, 1997).
One of the most publicized feats of LSA was its
ability to achieve a score on the Test of English
as a Foreign Language (TOEFL) that would allow
it entrance into most U.S. colleges (Landauer
& Dumais, 1997). A critically important insight
from the TOEFL simulation was that the model’s

performance peaked at the reduced 300 dimensions
compared to fewer or even the full dimensionality
of the  matrix. Even though the ability of the
model (from an algebraic perspective) to reconstruct
the original M matrix diminishes monotonically as
dimensionality is reduced, its ability to simulate
the human semantic data was better at the reduced
dimensionalities. This finding supports the notion
that semantic memory may simply be supported by
a mental dimension reduction mechanism applied
to episodic contexts. The dimension reduction
operation brings out higher-order abstractions by
glossing over variance that is idiosyncratic to
specific contexts. The astute reader will note the
similarity of this notion to the emergent behavior
of the hidden layers of a connectionist network
that also performs some dimensional reduction
operation; we will return to this similarity in the
discussion.

The influence of LSA on the field of semantic
modeling cannot be overstated. Several criticisms of
the model have emerged over the years (see Perfetti,
1998), including the lack of incremental learning,
neglect of word-order information, issues about
what exact cognitive mechanisms would perform
SVD, and concerns over its core assumption that
meaning can be represented as a point in space.
However, LSA clearly paved the way for a rapid
sequence of advances in semantic models in the
years since its publication.

Moving Window Models
An alternative approach to learning distribu-

tional semantics is to slide an N -word window
across a text corpus, and to apply some lexical
association function to the co-occurrence counts
within the window at each step. Although LSA
represents a word’s episodic context as a doc-
ument, moving-window models operationalize a
word’s context in terms of the other words that
it is commonly seen with in temporal contexts.
Compared to LSA’s batch-learning mechanism, this
allows moving-window models to gradually de-
velop semantic structure from simple co-occurrence
counting (cf. Hebbian learning), because a text
corpus is experienced in a continuous fashion.
In addition, several of these models inversely
weight co-occurrence by how many words intervene
between a target word and its associate, allowing
them to capitalize on word-order information.

The prototypical exemplar of a moving-window
model is the Hyperspace Analogue to Language
model (HAL; Lund & Burgess, 1996). In HAL,
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a co-occurrence window (typically, the 10 words
preceding and succeeding the target word) is slid
across a text corpus, and a global word-by-word
co-occurrence matrix is updated at each one-word
increment of the window. HAL uses a ramped
window in which co-occurrence magnitudes are
weighted inversely proportional to distance from
the target word. A word’s semantic representation
in the model is simply a concatenation of its row
and column vectors from the global co-occurrence
matrix. The row and column vectors reflect the
weighted frequency with which each word preceded
and succeeded, respectively, the target word in the
corpus. Obviously, the word vectors in HAL are
both high dimensional and very sparse. Hence, it
is common to only use the column vectors with
the highest variance (typically about 10% of all
words are then retained as ‘context’ words; Lund
& Burgess, 1996). Considering its simplicity, HAL
has been very successful at accounting for human
behavior in semantic tasks, including semantic
priming (Lund & Burgess, 1996), and asymmetric
semantic similarity as well as higher-order tasks such
as problem solving (Burgess & Lund, 2000).

In HAL, words are most similar if they have
appeared in similar positions relative to other words
(paradigmatic similarity; e.g., bee-wasp). In fact,
Burgess and Lund (2000) have suggested that
the structure learned by HAL is very similar to
what an SRN (Elman, 1990) would learn if it
could scale up to such a large linguistic dataset.
In contrast, it is known that LSA gives stronger
weight to syntagmatic relations (e.g., bee-honey)
than does HAL, since LSA ignores word order, and
both types of similarity are important factors in
human semantic representation (Jones, Kintsch, &
Mewhort, 2006).

Several recent modifications to HAL have pro-
duced models with state-of-the-art performance at
simulating human data. One concern in the original
model was that chance frequencies can produce
spurious similarities in the global matrix: A higher
frequency word has a greater chance of randomly
occurring with any other word and, hence, high-
frequency words end up being more semantically
similar to a target independent of semantic similar-
ity. Recent versions of HAL, such as Hidex (Shaoul
& Westbury, 2006) factor out chance occurrence by
weighting co-occurrence by inverse frequency of the
target word, which is similar to LSA’s application of
log-entropy weighting but after learning the matrix.
A second modification to HAL was proposed by
Rohde, Gonnerman, and Plaut (2004) in their

COALS model (Correlated Occurrence Analogue
to Lexical Semantics). In COALS, there is no
preceding/succeeding distinction within the mov-
ing window, and the model uses a co-occurrence
association function based on Pearson’s correlation
to factor out the confounding of chance co-
occurrence due to frequency. Hence, the similarity
between two words is their normalized covariational
pattern over all context words. In addition, COALS
performs SVD on this matrix. Although these
are quite straightforward modifications to HAL,
COALS heavily outperforms its predecessor on hu-
man tasks such as semantic categorization (Riordan
& Jones, 2011).

A similar moving window model was used
by McDonald and Lowe (1998) to simulate
semantic priming. In their model, there is no
predecessor/successor distinction, but all words are
simply represented by their co-occurrence in the
moving window with a small number of predefined
“context words.” Although many applications of
HAL tabulate the entire matrix and then discard
the 90% of column vectors with the least amount
of variance, McDonald and Lowe’s context-word
approach specifies the context words (columns) a
priori, and it tabulates row vectors for each target
word but only in relation to the predefined context
words. This context word approach, in which as
few as 100 context words are used as the columns,
has also been successfully used by Mitchell et al.
(2008) to predict fMRI brain activity associated
with humans making semantic judgments about
nouns. Slightly more modern versions of these
context-word models use log likelihood or log odds
rather than raw co-occurrence frequency as matrix
elements (Lowe & McDonald, 2000), and some
even apply SVD to the word-by-word matrix (e.g.,
Budi, Royer, & Pirolli, 2007) to bring out latent
word relationships.

Moving window models such as HAL have
surprised the field with the array of “deep” semantic
tasks they can explain with relatively simple learning
algorithms based on counting repetitions. They also
tie large-scale models of statistical semantics with
other learning models such as compound cuing
(McKoon & Ratcliff, 1992) and cross-situational
word learning (Smith & Yu, 2008).

Random Vector Models
An entirely different take on contextual rep-

resentation is seen in models that use random
representations for words that gradually develop
semantic structure through repeated episodes of the
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word in a text corpus. The mechanisms used by
these models are theoretically tied to mathematical
models of associative memory. For this reason,
random vector models tend to capitalize on both
contextual co-occurrence as LSA does, and also
associative position relative to other words as
models like HAL and COALS do, representing
both in a composite vector space.

In the Bound Encoding of the Aggregate
Language Environment model (BEAGLE; Jones
& Mewhort, 2007), semantic representations are
gradually acquired as text is experienced in sentence
chunks. The model is based heavily on mechanisms
from Murdock’s (1982) theory of item and associa-
tive memory. The first time a word is encountered,
it is assigned a random initial vector known as its en-
vironmental vector, ei. This vector is the same each
time the word is experienced in the text corpus, and
is assumed to represent the relatively stable physical
characteristics of perceiving the word (e.g., its visual
form or sound). The random vector assumption is
obviously an oversimplification, assuming that all
words are equally similar to one another in their
environmental form (e.g., dog is as similar to dug as
it is to carburetor), but see Cox, Kachergis, Recchia,
and Jones (2010) for a version of the model that
builds in preexisting orthographic structure.

In BEAGLE, each time a word is experienced
in the corpus, its memory vector, mi, is updated
as the sum of the random environmental vectors
for the other words that occurred in context with
it, ignoring high-frequency function words. Hence,
in the short phrase “A dog bit the mailman,”
the memory representation for dog is updated as
mdog = ebit + emailman. In the same sentence,
mbit = edog+ emailman and mmailman= edog + ebit are
encoded. Even though the environmental vectors
are random, the memory vectors for each word
in the phrase have some of the same random en-
vironmental structure summed into their memory
representations. Hence, mdog , mbit , and mmailman all
move closer to one another in memory space each
time they directly co-occur in contexts. In addition,
latent similarity naturally emerges in the memory
matrix; even if dog and pitbull never directly co-
occur with each other, they will become similar in
memory space if they tend to occur with the same
words (i.e., similar contexts). This allows higher-
order abstraction, achieved in LSA by SVD, to
emerge in BEAGLE naturally from simple Hebbian
summation. Rather than reducing dimensionality
after constructing a matrix, BEAGLE sets dimen-
sionality a priori, and the semantic information is

distributed across dimensions evenly. If fewer or
more dimensions are selected (provided a critical
mass is used), the information is simply distributed
over fewer or more dimensions. Multiple runs of
a model on the same corpus may produce very
different vectors (unlike LSA or HAL), but the
overall similarity structure of the memory matrix
on multiple runs will be remarkably similar. In
this sense, BEAGLE has considerable similarity to
unsupervised connectionist models.

The use of random environmental representa-
tions allows BEAGLE to learn information as would
LSA, but in a continuous fashion and without the
need for SVD. But the most interesting aspect of the
model is that the random representations allow the
model to encode word order information in parallel
by applying an operation from signal processing
known as convolution to bind together vectors
for words in sequence. Convolution-based memory
models have been very successful as models of both
vision and paired-associate memory, and BEAGLE
extends this mechanism to encode n-gram chunk
information in the word’s representation. The
model uses circular convolution, which binds
together two vectors, with dimensionality n, into
a third vector of the same dimensionality:

for i = 0 to n−1: zi =
n−1∑
j=0

xjmodn ∗ y(i−j)modn (2)

BEAGLE applies this operation recursively to create
an order vector representing all the environmental
vectors that occur in sequences around the target
word, and this order vector is also summed into the
word’s memory vector. Hence, the memory vector
becomes a pattern of elements that reflects the
word’s history of co-occurrence with, and position
relative to, other words in sentences. Words that
appear in similar contexts and similar syntactic roles
within sentences will become progressively more
similar. Jones, et al. (2006) have demonstrated
how this integration of context and order infor-
mation in a single vector representation allows the
model to better account for patterns in semantic
priming data.

An additional benefit of having order informa-
tion encoded in a word’s memory vector is that the
convolution mechanism used to encode sequence
information may be inverted to decode sequential
expectancies for a word from its learned history.
This decoding operates in a similar fashion to how
Murdock (1982) retrieves an associated target given
a cue in paired-associate learning. The model can
make inferences about likely transitions preceding
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or following a word and can build up expectancies
for which words should be upcoming in sentence
processing tasks using the same associative mech-
anism it uses for learning (see Jones & Mewhort,
2007). Although it only learns lexical semantic
structure, BEAGLE naturally displays complex
rulelike syntactic behavior as an emergent property
of its lexicon. Further, it draws a theoretical bridge
between models of lexical semantics and associative
memory suggesting that they may be based on the
same cognitive mechanisms.

A similar approach to BEAGLE, known as
random indexing, has been taken by Kanerva and
colleagues (Kanerva, 2009; Kanerva, Kristoferson,
& Holst, 2000). Random indexing uses similar
principles to BEAGLE’s summation of random
environmental vectors, but is based on Kanerva’s
(1988) theory of sparse distributed memory. The
initial vector for a word in random indexing
is a sparse binary representation, a very high
dimensional vector in which most elements are
zeros with a small number of random elements
switched to ones (a.k.a., a “spatter code”). A word’s
memory representation is then a sum of initial
vectors for the other words with which it has
appeared in contexts. Words that are semantically
similar will tend to be additive on the random
elements that they share nonzero values on, which
leads to a similarity structure remarkably similar to
LSA, but without the need for SVD.

Sahlgren, Holst, & Kanerva (2008) have
extended random indexing to encode order in-
formation as does BEAGLE in their Random
Permutation Model (RPM). The RPM encodes
contextual information the same way as standard
random indexing. Rather than convolution, it uses a
permutation function to encode the order of words
around a target word. The permutation function
may be applied recursively to encode multiple
words at multiple positions around the target word,
and this order vector is also added to the word’s
memory representation. Like BEAGLE, a word’s
memory vector is a distributed pattern that contains
information about its co-occurrence with and
position relative to other words. However, in RPM
this representation is a sparse hyperdimensional
vector that contains less noise than does BEAGLE’s
dense Gaussian vectors. In comparative simulations,
RPM has been shown to outperform BEAGLE on
simple associative tasks (Recchia, Jones, Sahlgren,
& Kanerva, 2010).

Howard and colleagues (e.g., Howard, Shakar,
& Jagadisan, 2011) have taken a different approach

to learning semantic representations, binding local
item representations to a gradually changing rep-
resentation of context by modifying the Temporal
Context Model (TCM; Howard & Kahana, 2002)
to learn semantic information from a text corpus.
The TCM uses static vectors representing word
form, similar to RPM’s initial vectors or BEAGLE’s
environmental vectors. However, the model binds
words to temporal context, a representation that
changes gradually with time, similar to oscillator-
based systems. In this sense, the model is heavily
inspired by hippocampal function. Encountering a
word reinstates its previous temporal contexts when
encoding its current state in the corpus. Hence,
whereas LSA, HAL, and BEAGLE all treat context
as a categorical measure (documents, windows,
and sentences, respectively, are completely different
contexts), TCM treats context as a continuous
measure that is gradually changing over time. In
addition, although all the aforementioned models
are essentially batch learners or ignore previous
semantic learning when encoding a word, a word’s
learned history in TCM contributes to its future
representation. This is a unique and important
feature of TCM compared to other models.

Howard et al. (2011) trained a predictive version
of TCM (pTCM) on a text corpus to compare to
established semantic models. The pTCM contin-
uously attempts to predict upcoming words based
on reinstated temporal context. In this sense, the
model has many features in common with both
BEAGLE and SRNs (Elman, 1990), allowing it
to represent both context and order information
within the same composite representation. Howard
et al. demonstrate impressive performance from
pTCM on linguistic association tasks. In addition,
the application of TCM in general to semantic
representation makes a formal link to mechanisms
of episodic memory (which at its core, TCM is), as
well as findings in cognitive neuroscience (see Polyn
& Kahana, 2008).

Probabilistic Topic Models
Considerable attention in the cognitive model-

ing literature has recently been placed on Bayesian
models of cognition (see Austerweil, et al., this vol-
ume), and mechanisms of Bayesian inference have
been successfully extended to semantic memory as
well. Probabilistic topic models (Blei, Ng, & Jordan,
2003; Griffiths, Steyvers, & Tenenbaum, 2007)
operate in a similar fashion to LSA, performing
statistical inference to reduce the dimensionality
of a term-by-document matrix. However, the
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theoretical mechanisms behind the inference and
representation in topic models differ markedly from
LSA and other spatial models.

An assumption of a topic model is that docu-
ments are generated by mixtures of latent “topics,”
in which a topic is a probability distribution over
words. Although LSA makes a similar assumption
that latent semantic components can be inferred
from observable co-occurrences across documents,
topic models go a step further, specifying a
fully generative model for documents (a procedure
by which documents may be generated). The
assumption is that when constructing documents,
humans are sampling a distribution over universal
latent topics. For example, one might construct
a document about a recent beetle infestation by
mixing topics about insects, forests, the ecosystem,
etc., with varying weights. To generate each
word within this document, one samples a topic
according to the document’s mixture weights, and
then samples words from that topic’s probability
distribution over words.

To train the model, Bayesian inference is used to
reverse the generative process: Assuming that topic
mixing is what generates documents, the task of the
model is to invert the process and statistically infer
the set of topics that were responsible for generating
a given set of documents. The formal instantiation
of a topic model can be technically intimidating
to the novice modeler—based on Latent Dirichlet
Allocation algorithms, Markov Chain Monte Carlo
algorithms etc. (see Griffiths et al., 2007; Griffiths,
Steyvers, Blei, & Tenenbaum, 2005). However, but
it is important to note that the theoretical ideas
underlying the model are actually quite simple and
elegant and are based on the same ideas posited
for how children infer unseen causes for observable
events (Tenenbaum, Kemp, Griffiths, & Goodman,
2011).

Consider the analogy of a dermatologist: Given
that disease X is present, symptoms A, B, and C are
expected to manifest. The task of a dermatologist
is one of causal inference, however—given a set of
co-occurring symptoms she must infer the unseen
disease or diseases that produced the observed data.
Over many instances of the same co-occurring
symptoms, she can infer the likelihood that they
are the result of a common cause. The topic
model works in an analogous way, but on a much
larger scale of inference and with mixtures of causal
variables. Given that certain words tend to co-occur
in contexts and this pattern is consistent over
many contexts, the model infers the likely latent

“topics” that are responsible for generating the co-
occurrence patterns, in which each document is a
probabilistic mixture of these topics. Each topic is
a probability distribution over words, and a word’s
meaning can be captured by the probability that it
was generated by each topic (just as each disease
would be a probability distribution over symptoms,
and a symptom is a probability distribution over
possible diseases that generated it).

Figure 11.3, reproduced from Steyvers and
Griffiths (2007), illustrates this process. Assuming
that document co-occurrences are being generated
by the process on the left, the topic model attempts
to statistically infer (on the right) the most likely
topics and mixtures that would have generated the
observed data. It is important to note that, like LSA,
topic models tend to assume a simple bag-of-words
representation of a document, neglecting word-
order information (but see Andrews & Vigliocco,
2010; Griffiths, et al., 2005). Similar to LSA, each
document in the original co-occurrence matrix may
be reconstructed by determining the document’s
distribution over N topics (reflecting its gist, g),
using this distribution to select a topic for each
word wi, and then generating a word from the
distribution of words conditioned on the topic:

P
(
wi

∣∣ g
)= N∑

zi=1

P(wi|zi)P
(
zi
∣∣ g

)
, (3)

where w is the distribution of words over topics,
and z is the distribution of topics over words. In
practice, topic models construct a prior value on
the degree of mixing of topics in a document, and
then estimate the probability distributions of topics
over words and documents over topics using Gibbs
sampling (Griffiths & Steyvers, 2004).

The probabilistic inference machinery behind
topic models results in at least three major dif-
ferences in topic models when compared to other
distributional models. First, as mentioned earlier,
topic models are generative. Second, it is often sug-
gested that the topics themselves have a meaningful
interpretation, such as finance, medicine, theft,
and so on, whereas the components of LSA are
difficult to interpret, and the components of models
like BEAGLE are purposely not interpretable in
isolation from the others. It is important to note,
however, that since the number of topics (and the
value of the priors) is set a priori by the theorist,
there is often a considerable amount of hand-fitting
and intuition that can go into constructing topics
that are meaningful (similar to “labeling” factors
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Fig. 11.3 Illustration of the generative process (left) and the problem of statistical inference (right) underlying topic models.
(Reproduced from Steyvers & Griffiths, 2007).
Steyvers, M., & Griffiths, T. (2008). Probabilistic topic models. In T. Landauer, D. McNamara, S. Dennis, & W. Kintsch (Eds.) Handbook of Latent

Semantic Analysis, NJ: Erlbaum. With kind permission from the Taylor and Francis Group.

Box 1 So Which Model Is Right?
It is tempting to think of different distribu-
tional models as competing “brands.” However,
a potentially more fruitful approach is to
consider each specific model as a point in
a parameter space, as one would with other
cognitive models. Each model is really just a
particular set of decisions made to formalize the
distributional theory of “knowing a word by the
company it keeps” (Firth, 1957), and no single
model has emerged victorious at accounting
for the wide range of semantic behavioral data.
Each model has its merits and shortcomings.

How should distributional models be com-
pared? If a model is being proposed as a
psychological model, it is important to identify
the model’s subprocesses. How do those sub-
processes contribute to how the model works?
How are they related to other psychological
theories? And how do they contribute to the
model’s ability to predict behavioral data? For
example, LSA and HAL vary in a large number
of ways (see Table 1). Studies that perform
simple model comparisons end up confound-
ing these differences, leaving us unsure what
underlying psychological claim is being tested.

Most model differences can be ascribed to
one of three categories, each corresponding
to important differences in the underlying
psychological theory:

1. Representational structure: What
statistical information does the model pay

attention to, and how is this information
initially represented?

2. Representational transformations: By
what function are the representations
transformed to produce a semantic space?

3. Comparison process: How is the semantic
space queried, and how is the semantic
information, relations, or similarity used to
model behavioral data?

The HAL model defines its representations
in terms of a word-by-word co-occurrence
matrix, whereas the LSA model defines its rep-
resentation in terms of a word-counts-within-
documents matrix. This difference corresponds
to a long tradition of different psychological
theories. HAL’s word-word co-occurrences are
akin to models that propose representations
based on associations between specific stimuli
(such as classical associationist theories of
learning). In contrast, LSA’s word-by-document
representation proposes representations based
associations between a stimuli and abstract
pointers to the event in which those stimuli
participate (similar to classic context association
theories of learning).

A number of studies have begun comparing
model performance as a function of differ-
ences in these subprocesses (e.g. Bullinaria &
Levy, 2012; Shaoul & Westbury, 2010), but
much more research is needed before any firm
conclusions can be made.
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in a factor analysis). Third, words in a topic
model are represented as probability distributions
rather than as points in semantic space; this is
a key distinction between topic models and the
earlier spatial models. It allows topic models to
naturally display asymmetric associations, which
are commonly seen in free association data but
require additional assumptions to explain with
spatial models (Griffiths, et al., 2007; but see Jones,
Gruenenfelder, & Recchia, 2011). Representing a
word’s meaning with a probability distribution also
naturally allows for polysemy in the representation
compared to vector representation models that
collapse multiple meanings to a single point. For
these reasons, topic models have been shown to
produce better fits to free association data than LSA,
and they are able to account for disambiguation,
word-prediction, and discourse effects that are
problematic for LSA (Griffiths et al., 2007).

Box 2 Semantic Memory Modeling
Resources
A chapter on semantic models would seem
incomplete without some code! Testing models
of semantic memory has become much easier
due to an increase in semantic modeling
resources. There are now a wide variety of
software packages that provide the ability
to construct and test semantic models. The
software packages vary in terms of their easy
of installation and use, flexibility, and perfor-
mance. In addition to the software packages,
a limited number of Web-based resources exist
for doing simple comparisons online. You may
test models on standardized datasets, train them
on your own corpora for semantic exploration,
or use them for generating stimuli.

Software Packages

• HiDEx (http://www.psych.ualberta.ca/
westburylab/downloads/HiDEx.download.
html): A C++ implementation of the HAL
model; it is useful for constructing large
word-by-word co-occurrence matrices and
testing a wide variety of possible parameters.
• SuperMatrix (http://semanticore.org/

supermatrix/): A python implementation of a
large number of semantic space model
transformations (including PCA/SVD, Latent
Dirichlet Allocation, and Random Vector
Accumulation) on both word-by-word

and word-by-document spaces. SuperMatrix
was designed to emphasize the exchangeability
of various sub-processes within semantic
models (see Box 1), to allow isolation and
testing the effects of specific model
components.
• GenSim (http://radimrehurek.com/

gensim/): A python module that is very fast
and efficient for constructing and testing
word-by-document models, including LSA
(reduced using SVD) and Topics (reduced
using Latent Dirichlet Allocation).
• S-Space (https://github.com/

fozziethebeat/S-Space): A Java-based
implementation of a large number of semantic
space models, including HAL, LSA, BEAGLE,
and COALS.
• SEMMOD (http://mall.psy.ohio-state.

edu/wiki/index.php/Semantic_Models_Package_
(SEMMOD)): A python package to
implement and compare many of the most
common semantic models.
• Word-Similarity (https://code.google.

com/p/wordsimilarity/wiki/train): A tool to
explore and visualize semantic spaces, displayed
as directed graphical networks.

Web-Based Resources

• http://lsa.colorado.edu: The original
LSA website provides the ability to
exploreLatent Semantic Analysis with a wide
variety of different metrics, including
word-word similarities, similarities of passages
of text to individual words, and similarities of
passages of texts to each other.
• http://semanticore.org: The Semanticore

website is a web portal designed to bring data
from many semantic models and
psycholinguistic databases under one roof.
Users can obtain frequency and co-occurrence
statistics from a wide variety of corpora, as well
as semantic similarities from a number of
different semantic memory models, including
HAL, LSA, BEAGLE, and Probabilistic Topics
Models.

Retrieval-Based Semantics
Kwantes (2005) proposed an alternative ap-

proach to modeling semantic memory from dis-
tributional structure. Although not named in his

246 h i g h e r l e v e l c o g n i t i o n



publication, Kwantes’s model is commonly referred
to as the constructed semantics model (CSM), a
name that is paradoxical given that the model
posits that there is no such thing as semantic
memory. Rather, semantic behavior exhibited by
the model is an emergent artifact of retrieval from
episodic memory. Although all other models put the
semantic abstraction mechanism at encoding (e.g.,
SVD, Bayesian inference, vector summation), CSM
actually encodes the episodic matrix and performs
abstraction as needed when a word is encountered.

CSM is based heavily on Hintzman’s (1986)
Minerva 2 model which was used as an existence
proof that a variety of behavioral effects that
had been used to argue for two distinct memory
stores (episodic and semantic) could naturally be
produced by a model that only had memory for
episodes. So-called “prototype effects” were simply
an artifact of averaging at retrieval in the model,
not necessarily evidence of a semantic store. CSM
extends Minerva 2 almost exactly to a text corpus.
In CSM, the memory matrix is the term-by-
document matrix (i.e., it assumes perfect memory
of episodes). When a word is encountered in
the environment, its semantic representation is
constructed as an average of the episodic memories
of all other words in memory, weighted by their
contextual similarity to the target. The result is a
vector that has higher-order semantic similarities
accumulated from the lexicon. This semantic vector
is similar in structure to the memory vector learned
in BEAGLE by context averaging, but the averaging
is done on the fly, it is not encoded or stored.

Although retrieval-based models have received
less attention in the literature than models like
LSA, they represent a very important link to other
instance-based models, especially exemplar models
of recognition memory and categorization (e.g.,
Nosofsky, 1986). The primary reason limiting their
uptake in model applications is likely due to the
heavy computational expense required to actually
simulate their process (Stone, Dennis, & Kwantes,
2011).

Grounding Semantic Models
Semantic models, particularly distributional

models, have been criticized as psychologically
implausible because they learn from only linguistic
information and do not contain information about
sensorimotor perception contrary to the grounded
cognition movement (for a review, see de Vega,
Glenberg, & Graesser, 2008). Hence, representa-
tions in distributional models are not a replacement

for feature norms. Feature-based representations
contain a great deal of sensorimotor properties of
words that cannot be learned from purely linguistic
input, and both types of information are core to
human semantic representation (Louwerse, 2008).
Riordan and Jones (2011) recently compared a
variety of feature-based and distributional models
on semantic clustering tasks. Their results demon-
strated that whereas there is information about
word meaning redundantly coded in both feature
norms and linguistic data, each has its own unique
variance and the two information sources serve as
complimentary cues to meaning.

Research using recurrent networks trained on
child-directed speech corpora has found that pre-
training a network with features related to children’s
sensorimotor experience produced significantly bet-
ter word learning when subsequently trained on
linguistic data (Howell, Jankowicz, & Becker,
2005). Durda, Buchanan, and Caron (2009)
trained a feed-forward network to associate LSA-
type semantic vectors with their corresponding
activation of features from McRae, Cree, Seiden-
berg, and McNorgan’s (2005) norms. Given the
semantic representation for dog, the model attempts
to activate correct output features such as <has
fur> and inhibit incorrect output featuressuch
as<made of metal>. After training, the network
was able to infer the correct pattern of perceptual
features for words that were not used in training
because of their linguistic similarity to words that
were learned.

Several recent probabilistic topic models have
also explored parallel learning of linguistic and
featural information (Andrews, Vigliocco, &
Vinson, 2009; Baroni, Murphy, Barba, & Poesio,
2010; Steyvers, 2009). Given a word-by-document
representation of a text corpus and a word-by-
feature representation of feature production norms,
the models learn a word’s meaning by simulta-
neously considering inference across documents
and features. This enables learning from joint
distributional information: If the model learns
from the feature norms that sparrows have beaks,
and from linguistic experience that sparrows and
mockingbirds are distributionally similar, it will infer
that mockingbirds also have beaks, despite having
no feature vector for mockingbird. Integration of
linguistic and sensorimotor information allows the
models to better fit human semantic data than a
model trained with only one source (Andrews et al.,
2009). This information integration is not unique
to Bayesian models but can also be accomplished

m o d e l s o f s e m a n t i c m e m o r y 247



Ta
bl

e
11

.1
.

H
ig

hl
y

ci
te

d
se

m
an

ti
c

m
od

el
s

an
d

th
e

sp
ec

ifi
c

su
bp

ro
ce

ss
es

th
at

co
m

pr
is

e
th

e
m

od
el

s.

M
od

el
R

ep
re

se
nt

at
io

na
lS

tr
uc

tu
re

R
ep

re
se

nt
at

io
na

lT
ra

ns
fo

rm
at

io
n

C
om

pa
ri

so
n

P
ro

ce
ss

U
ni

t
Ty

pe
U

ni
t

Sp
an

N
or

m
al

iz
at

io
n

A
bs

tr
ac

ti
on

H
A

L
O

rd
er

ed
w

or
d-

by
-w

or
d

D
is

ta
nc

e
w

ei
gh

te
d

10
-

C
on

di
tio

na
lp

ro
ba

bi
lit

ie
s

N
on

e
C

ity
bl

oc
k

di
st

an
ce

si
m

ila
ri

ty
co

-o
cc

ur
re

nc
e

m
at

ri
x

w
or

d
w

in
do

w
(m

at
ri

x
ro

w
su

m
)

C
O

A
LS

O
rd

er
ed

w
or

d-
by

-w
or

d
10

-w
or

d
w

in
do

w
C

or
re

la
tio

na
ln

or
m

al
iz

at
io

n
Pr

in
ci

pl
e

co
m

po
ne

nt
s

an
al

ys
is

C
or

re
la

tio
na

ls
im

ila
ri

ty
co

-o
cc

ur
re

nc
e

m
at

ri
x

LS
A

U
no

rd
er

ed
w

or
d-

by
-d

oc
um

en
t

Pr
ed

efi
ne

d
do

cu
m

en
t

Lo
g

en
tr

op
y

Si
ng

ul
ar

va
lu

e
de

co
m

po
si

ti
on

C
os

in
e

si
m

ila
ri

ty
co

un
t

m
at

ri
x

To
pi

c
M

od
el

s
U

no
rd

er
ed

w
or

d-
by

-d
oc

um
en

t
Pr

ed
efi

ne
d

do
cu

m
en

t
N

on
e

La
te

nt
D

ir
ic

hl
et

al
lo

ca
tio

n
In

ne
r

pr
od

uc
t

si
m

ila
ri

ty
co

un
t

m
at

ri
x

B
E

A
G

LE
O

rd
er

ed
w

or
d-

by
-w

or
d

m
at

ri
x

Se
nt

en
ce

w
in

do
w

N
on

e
R

an
do

m
ve

ct
or

ac
cu

m
ul

at
io

n
C

os
in

e
si

m
ila

ri
ty



within random vector models (Jones & Recchia,
2010; Vigliocco, Vinson, Lewis, & Garrett, 2004)
and retrieval-based models (Johns & Jones, 2012).

Compositional Semantics
The models we have considered thus far are

designed to extract the meaning of individual terms.
However, the sentence “John loves Mary” is not
just the sum of the words it contains. Rather
“John” is bound to the role LOVER and “Mary”
is bound to the role LOVEE. The study of how
sentence structure determines these bindings is
called compositional semantics. Recent work has
begun to explore mechanisms for compositional
semantics by applying learning mechanisms to the
already learned lexicon of a distributional model
(Mitchell & Lapata, 2010).

Dennis (2004, 2005) argued that extracting
propositional structure from sentences revolves
around the distinction between syntagmatic and
paradigmatic associations. Syntagmatic associations
occur between words that appear together in utter-
ances (e.g., run fast). Paradigmatic associations oc-
cur between words that appear in similar contexts,
but not necessarily in the same utterances (e.g.,
deep and shallow). The syntamatic paradigmatic
model proposes that syntagmatic associations are
used to determine that words could have filled
a particular slot within a sentence. The set of
these words form role vectors that are then bound
to fillers by paradigmatic associations to form a
propositional representation of the sentence. The
syntagmatic paradigmatic mechanism has been
shown to be capable of accounting for a wide range
of sentence-processing phenomena. Furthermore,
it is capable of taking advantage of regularities
in the overlap of role patterns to create implicit
inferences that Dennis (2005) claimed are respon-
sible for the robustness of human commonsense
reasoning.

Common Lessons and Future Directions
Models of semantic memory have seen impres-

sive developments over the past two decades that
have greatly advanced our understanding of how
humans create, represent, and use meaning from
experience. These developments have occurred
thanks in part to advances in other areas, such as
machine learning and to better large-scale norms
of semantic data on which to fit and compare the
models. In general, distributional models have been
successfully used to better explore the statistical

structure of the environment and to understand
the mechanisms that may be used to construct
semantic representations. Connectionist models are
an excellent compliment, elucidating our under-
standing of semantic processing, and how semantic
structure interacts with other cognitive systems and
tasks. An obvious and important requirement for
the future is to start to bring these insights together,
and several hybrid models are now emerging in the
literature.

Several important themes have emerged that
are common to both the connectionist and dis-
tributional literatures. The first is data reduction.
Whatever specific mechanism humans are using to
construct conceptual and propositional knowledge
from experience, it is likely that this mechanism
learns by focusing on important statistical factors
that are constant across contexts, and by throwing
away factors that are idiosyncratic to specific
contexts. In a sense, capacity constraints on human
encoding, storage, and retrieval may give rise to our
incredible ability to construct and use meaning.

A second common theme is the importance
of data scale in semantic modeling. In both
connectionist and distributional models, the issue
of data scale versus mechanistic complexity has
been brought to the forefront of discussion in the
literature. A consistent emerging theme is that
simpler models tend to give the best explanation
of human data, both in terms of parsimony and
quantitative fit to the data, when they are trained
on linguistic data that is on a realistic scale to
what humans experience. For example, although
simple context-word moving-window models are
considerably simpler than LSA and do not perform
well at small data scales, they are capable of
scaling up to learn from human-scale amounts of
linguistic data (a scale not necessarily possible to
learn with LSA), and consistently outperform more
complex models such as LSA with large data (e.g.,
Louwerse, 2011; Recchia & Jones, 2009). This
leads to potential concern that earlier theoretical
advancements with models trained on so-called “toy
datasets” (artificial language corpora constructed to
test the model’s structural learning) may have been
overly complex. To fit human behavioral data with
a corpus that is far smaller and without the deep
complexities inherent in real language, the model
must necessarily be building complexity into the ar-
chitecture and mechanism whereas humans may be
using a considerably simpler mechanism, offloading
considerable statistical complexity already present in
their linguistic environment.
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A third common theme is that complex semantic
structures and behaviors may be an emergent
property of the lexicon. Emergence is a key
property of connectionist models, and we have
seen that complex representations of schemata,
hierarchical categories, and syntactic processing
may be emergent consequences of many connec-
tionist models (e.g., Rogers & McClelland, 2004).
But emergence is also a natural consequence of
distributional models. In several cases, the same
mechanisms used to learn semantic representations
may be applied to the learned representations
to simulate complex behaviors, such as BEA-
GLE’s ability to model sentence comprehension
as an emergent property of order information
distributed across the lexicon (Jones & Mewhort,
2007). Topic models also possess a natural mech-
anism for producing asymmetric similarity and
polysemous processing through conditional infer-
ence.

Learning to organize the mental lexicon is one
of the most important cognitive functions across
development, laying the fundamental structure
for future semantic learning and communicative
behavior. Semantic modeling has a very promising
future, with potential to further our understanding
of basic cognitive mechanisms that give rise to
complex meaning structures, and how these mental
representations are used in a wide range of higher-
order cognitive tasks.
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Note
1. One interpretation of feature comparison given by Rips

et al., 1973 was also spatial distance.

Glossary
Compositional Semantics: The process by which a com-
plex expression (e.g., a phrase or sentence) is constructed
from the meanings of its constituent concepts.

Concept: A mental representation generalized from par-
ticular instances, and knowledge of its similarity to other
concepts.

Connectionist Model: A model that represents knowledge
as weighted network of interconnected units. Behavioral
phenomena are an emergent process of the full network.

Context: In semantic models, context is typically con-
sidered the “window” within which two words may be
considered to co-occur, and it is one of the major theoretical
differences between distributional models. Context may
be considered to be discrete units, such as sentences or
documents, or it may be more continuous, such as in
moving-window or temporal context models.

Distributional Model: A general approach to concept
learning and representation from statistical redundancies in
the environment.

Dynamic Network: A connectionist network whose ar-
chitecture involves bi-directionality, feedback, or recurrent
connectivity.

Feature Comparison Model: A classic model of semantic
memory that represents concepts as vectors of binary
features representing the presence or absence of features.
For example, the has_wings element would be turned on
for ROBIN, but off for GOLDEN RETRIEVER.

Paradigmatic and Syntagmatic Relations: Paradigmatic
similarity between two words emphasizes their synonymy or
substitutability (bee-wasp), whereas syntagmatic similarity
emphasizes associative or event relations (e.g., bee-honey,
wasp-sting).

Proposition: A mental representation of conceptual re-
lations that may be evaluated to have a truth value, for
example, knowledge that birds have wings.

Random Vector Model: A semantic model that begins with
some sort of randomly generated vector to initially represent
a concept. Over linguistic experience, an aggregating
function gradually produces similar vector patterns among
words that are semantically related. They allow for study of
the time course of semantic acquisition.

Semantic Memory: Memory for word meanings, facts,
concepts, and general world knowledge. Typically not tied
to a specific event.

Semantic Network: A classic graphical model of semantic
memory that represents concepts as nodes and semantic
relations as labeled edges between the nodes. Often, the
hypothetical process of spreading activation is used to
simulate behavioral data such as semantic priming from a
semantic network.

Singular-Value Decomposition: A statistical method of
factorizing an m × n matrix, M, into an m × m unitary
matrix, U, an m × n diagonal matrix, �, with diagonal
entries that are the singular values, and an n × n unitary
matrix, V. The original matrix may be recomposed as
M =U�VT, where VT is the transpose of V.

Spatial Model: A model that represents word meaning as
a point in a multidimensional space, and that typically ap-
plies a geometric function to express conceptual similarity.

Supervised and Unsupervised Learning: Supervised
learning typically trains the model on a set of labeled
exemplars (i.e., the true output of each training exemplar is
known), whereas in unsupervised learning the model must
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Glossary
discover structure in the data without the benefit of known
labels.

Topic Model: A generative probabilistic model that uses
Bayesian inference to abstract the mental “topics” used to
compose a set of documents.
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