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Abstract 

This paper describes a computational model to explain a 
variety of results in false recognition. The processing 
mechanism in the model is built around a co-occurrence 
representation of lexical semantics, affording an account of 
both structure and process. We show that this model can 
naturally account for levels of false recognition that are seen 
in studies using the DRM paradigm, including item-level 
effects, reaction times, and event-related brain potentials. 
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Introduction 

False recognition is one of the most empirically studied 

phenomena in recent times, however very little formal 

modeling of this effect has been conducted. False 

recognition has been most studied using the 

Deese/Roediger-McDermott (DRM) paradigm (Deese, 

1959; Roediger & McDermott, 1995). In this task, lists of 

words that are associated with specific critical words are 

presented to subjects, and on subsequent memory tests the 

unpresented critical items are falsely recognized at almost 

the same level as studied items (Roediger & McDermott, 

1995). For example, given nurse, hospital, sick, and cure to 

remember, subjects are likely to subsequently produce a 

false alarm to doctor.  

Work within the DRM paradigm has provided 

fundamental evidence about the organization of human 

memory. The paradigm demonstrates that humans use 

semantic information to both store and retrieve items, and 

the use of this information can lead to profound memory 

errors. However, the exact mechanisms that underlie the 

false recognition of associates have evaded a formal 

explanation. Rather, theorists have focused more on general 

conceptual frameworks of cognition, such as Fuzzy Trace 

Theory (FTT; Brainerd & Reyna, 2002), the source-

monitoring framework (Johnson, Hashtroudi, & Lindsay, 

1993), and the discrepancy-attribution hypothesis 

(Whittlesea, 2002), to explain false memories.  

There are now many different computational models of 

recognition memory. However, a principled problem with 

these models is that the representations they use do not 

contain semantic information about specific words, due to 

the fact that their representations are typically constructed 

with random number generators. This practice is natural 

because the models are not typically used to simulate 

semantic effects in recognition memory. Further, it is still 

the subject of much debate what are the correct features to 

represent word meaning. However, we believe that in order 

to model semantic behaviors, such as is seen with false 

recognition, one must use a representation of words that 

contains semantic information. One promising avenue for 

these semantic representations are those created by co-

occurrence learning models.  

In a co-occurrence model, a word’s semantic 

representation is constructed by observing statistical 

regularities in a large corpus of text. These models can 

account for a variety of different semantic behaviors (for a 

review see Jones & Mewhort, 2007). Due to the success of 

co-occurrence models in other domains, it seems natural to 

assume that they could also be used to account for semantic 

effects in recognition memory. The models are particularly 

promising given the observation that associative variables 

are important predictors of false recognition and false recall, 

particularly backward association strength (Deese, 1959; 

Gallo & Roediger, 2002). Because co-occurrence 

representations correlate with backward association strength 

(Johns & Jones, 2008), their representations are appealing to 

be used in a processing model of false recognition. By using 

a representation of words that is built up through exposure 

to the environment, we are not simply assuming a particular 

semantic organization. Instead we are both explaining how a 

certain memory structure is created, and how this structure 

interacts with the processing mechanism. 

 

The Recognition through Semantic 

Amplification (RSA) Model 

Our false recognition model is based on the Iterative 

Resonance Model (IRM) of recognition memory (Mewhort 

& Johns, E., 2005). The motivation for IRM comes from a 

series of experiments demonstrating that Old responses and 

New responses are based upon different types of information 

(Mewhort & E. Johns, 2000). Note that a subject responds 

Old if the probe item was in the encoded list, and New if it 

was not. In particular, the authors found that the amount of 

contradictory information contained within a probe 

predicted New responses, whereas Old responses were based 

on the similarity of the probe to the memory items. The 

original IRM used this dual-criterion decision process. If a 

decision is not made on a particular information sample, 

then successive iterations are employed to sharpen the 

evidence. The number of iterations required for the model to 

make a decision is taken as a proxy of response latency.  

Our Recognition through Semantic Amplification (RSA) 

model is kept within the same formal framework as IRM, 
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but differs mainly in its representation assumptions. Rather 

than a set of randomly generated arbitrary features, RSA 

uses vectors that are built from a co-occurrence learning 

process. The model assumes that the semantic 

representations for words presented in a DRM list are 

retrieved from long-term memory and are stored in a 

composite memory store (containing a mix of semantic 

vectors for all the items on the list). When presented with a 

probe, the model uses a searching (amplification) process to 

determine whether the probe is similar enough to the 

composite store to respond Old, whilst simultaneously 

searching for contradictory information between the 

elementwise comparison of the probe and the composite 

store to respond New (i.e., old and new responses are based 

on different information, and the response is the winner of a 

race between the processes). In addition, we demonstrate 

that the model can be used to simulate both choice 

probability and response latency results within false 

recognition by using the number of iterations to make a 

decision (as in Mewhort & E. Johns, 2005).  

The RSA model may be divided into four main 

components: 1) a co-occurrence representation 2) encoding, 

3) amplification, and 4) decision. The processing model 

works by first encoding all the words that are seen in a 

specific study list into a single composite vector. This 

represents the ‘gist’ of the words that were seen. Then at 

test, the model attempts to amplify the probe word in this 

composite vector. If the probe word is in the memory store, 

its representation should be efficiently amplified. If the 

probe is not contained in the memory store, it will not be 

efficiently amplified. Each of these processes will be 

described in turn. The pseudocode routine for the RSA 

model is displayed in Figure 1, and the different processes 

are described formally in this figure. 

 

 
Figure 1. Pseudocode listing for the RSA model. 

 

1. Semantic Representations  

A word’s semantic representation in memory is built using a 

recent co-occurrence model entitled the Semantic 

Distinctiveness Memory (SDM) model (Johns & Jones, 

2008). The  SDM model is a co-occurrence learning model 

that was created in order to account for the effect of 

semantic distinctiveness on a word’s strength in memory. 

We have shown, in both a corpus analysis (Johns & Jones, 

2008) and an artificial language learning experiment 

(Recchia, Johns, & Jones, 2008), that words that occur in 

more semantically distinct contexts are more strongly 

represented within memory. Johns & Jones (2008) showed 

that this SDM model produces a better fit to both lexical 

decision/naming times and semantic organization than 

classic learning models, and these representations give a 

good account of semantic isolation effects, semantic 

similarity ratings, and association norms. 

   For the purpose of the current paper, the SDM vector 

representations can be thought of as similar to those created 

by other co-occurrence learning models, such as LSA 

(Landauer & Dumais, 1997). A principled difference is that 

SDM vectors are sparse vectors representing the weighted 

contexts in which words have co-occurred; this sparsity is 

optimal for our recognition process borrowed from IRM. 

The SDM semantic representation for every possible word 

is stored in long-term memory, and the representations for 

words presented are retrieved from this store and cast into a 

short-term store when encoding a DRM list.   

 

2. Encoding Phase 

The memory store that the processing model operates on is a 

single composite vector. Every word presented during the 

study phase is retrieved from the SDM mental lexicon and is 

added into this composite vector. Word vectors are first 

normalized, so that each word adds in approximately the 

same amount of information. Each vector is multiplied by a 

uniform random number between 0 and 1 to simulate 

encoding failure. The composite representation may be 

thought of as a superposition of items presented in the list. 

Other models, such as TODAM (Murdock, 1982), also 

use a composite vector to create a representation of an 

event. The different TODAM models use holographic 

vectors, whereas our vectors are simply summations of 

semantic traces, but both assume a single vector to create a 

representation of a study list. The practice is also a similar 

flavor to the proposal of fuzzy-trace theories, where a ‘gist’ 

representation of an episode is created. Even though fuzzy-

trace theory seems to entail more sophisticated processes of 

gist extraction, this encoding phase does correspond with 

some of the claims of this theory. 

 

3. Amplification Process  

The amplification process that the RSA model employs 

essentially works by attempting to ‘turn up the volume’ of 

the probe’s representation in memory, while dampening all 

other items. This causes the probe’s representation within 

do i=1, number_studied              % encoding process 

memory = memory + (normalize(item(i)) * random) 

enddo  

probe = normalize(probe) 

repeat 

  iter = iter + 1    

  do i = 1, length_vec                 % calculate contradictory    

 if (probe(i) > 0)  

cont_info += |norm_to_1(comp(i)) – norm_to_1(probe(i))| 

endif 

  enddo 

  cont_count += cont_info  

  similarity =cosine(probe, memory)/iter    % similarity 

  do i = 1, length_vec                 %amplification process 

  if (probe(i) > 0)  

  memory(i) = memory(i) + (probe(i) * (similarity/iter)) 

     else memory(i) = memory(i) * random 

  enddo 

  memory = normalize(memory) 

until ( (similarity > YES_crit) .or. (cont_count > NO_crit) ) 



memory to increase across iterations. How strongly the 

probe is amplified in the composite is determined by a 

normalized similarity value. This value is determined by 

taking the cosine between the probe and the memory vector 

and dividing it by the current iteration. Hence, even though 

the cosine increases due to the amplification process, the 

amount of increase is constrained by the current iteration 

that the model is in. If a decision is not made on the current 

iteration, the amplification process is repeated. 

The second mechanism works by iteratively dampening 

the non-defining elements of the probe in the composite. 

This is accomplished by simply multiplying the memory 

vector by a random number between 0 and 1 at each 

location where the probe word contains no information (i.e. 

where the probe vector is 0). With this process, a word that 

occurred in the study list is amplified more efficiently 

within the composite because it contains more semantic 

information and also contains less contradictory information 

that needs to be filtered out of the composite.  

 

4. Decision Process 

The model uses two different sources of information to 

make a decision about whether to accept or reject a probe. 

As in the IRM, Old responses will be based on the similarity 

of the probe to the memory vector, while New responses 

will be based on the amount of contradictory information 

that the probe did not occur in the study list. The similarity 

value will be assessed with a cosine between the probe and 

the memory vector. If this similarity value exceeds a certain 

criterion then the probe is accepted. In the following 

simulation, this yes criterion is set at 0.99. 

The amount of contradictory information is assessed by 

measuring the difference in the pattern of the probe and the 

memory vector. This is computed as the absolute difference 

between the defining portions of the probe and the 

corresponding locations within the memory vector, when 

both of the vectors are normalized to have a magnitude of 1. 

This returns a value between 0 and 1, which will be 0 if all 

of the probe information is contained in memory, and it will 

be 1 if none of the probe information is contained within 

memory. Since the amount of contradictory information will 

decrease across iterations (due to the amplification process), 

the amount of contradictory information is a running count. 

If this count exceeds a certain criterion, then the probe is 

rejected. In the following simulations this No criterion is set 

to 4.5. Thus, contradictory evidence is the difference in the 

values that define the probe word’s semantic representation 

(the non-zero entries in the word’s episodic trace) and the 

corresponding values in the composite vector.  

 

Discussion of RSA 

The model that we propose here is based on a simple 

representation assumption – that all the words seen in a 

study list are added into a single composite vector, or in 

other words, the composite contains the ‘gist’ of the study 

list. To determine whether a word occurred in a specific list, 

a simple mechanism is employed where a word’s 

representation is amplified within the composite. Old 

decisions are based on a similarity value between the probe 

word and the memory vector, whilst New decision are based 

on the amount of evidence that the word did not occur. The 

amplification process essentially works by attempting to 

filter the probe out of the composite representation, 

emphasizing signal (if present) while simultaneously 

dampening noise. If either signal or noise is strong enough, 

a confirmation/contradiction decision can be made.  

This model should be particularly effective at explaining 

false memory paradigms because the searching mechanism 

is dependent on the amount of semantic information 

contained within the composite vector shared with the 

probe. When the composite contains a large amount of 

information about a word, then it is amplified efficiently 

increasing the likelihood of reaching the Old criterion than 

the New criterion. Hence, even though a word was not 

contained in the study list, it could be accepted with a high 

probability if it shares semantic information with study 

words. There is very little complexity built into processing 

model; instead the main locus is put on the contents of 

memory. To this point, there are only two fixed parameters 

(both decision parameters) that drive this model.  

  

Simulations 

The methodology that we use in simulating false recognition 

results is very simple: for the exact words used in an 

experiment we retrieve the semantic representations learned 

by the SDM model and encode these words into a composite 

vector representing the list. The two parameters of the RSA 

model are fixed across simulations. Instead, the locus of 

memory effects are dependent on the different words in 

memory, not different processing for different experiments.  

 

Simulation #1: Levels of False Recognition 

We first test the RSA model on is whether it attains similar 

levels of false recognition to those seen in behavioral data. 

We will simulate three different sets of DRM lists: 1) the 

lists from Roediger and McDermott’s (1995) classic study, 

2) the extended DRM list set from Stadler, Roediger, & 

McDermott (1999), and 3) the more variable lists from 

Gallo & Roediger (2002).  

 

Method The DRM lists for the above described studies 

were attained from the specified papers. One list (that for 

man) was excluded because it was in the stop list that the 

SDM model was trained with. For a single trial, four DRM 

lists were randomly selected and added into the composite. 

The model was then tested with studied items and critical 

lures. Average hit and false recognition rates were recorded 

across 1000 trials. To test levels of false recognition to 

unrelated items, five words were randomly selected from the 

Toronto Word Pool (Friendly, et al., 1982), for each trial. 

 

Results The levels of recognition for studied, critical, and 

unrelated words for the model and each of the studies are 



displayed in Figure 2. This figure shows that the model 

gives a very good approximation to the qualitative trends 

seen in the behavioral data across the different word types. 

Hence, the RSA model seems to be susceptible to the same 

type of memory illusions that humans are. This is because 

the model amplifies the critical word trace efficiently due to 

the memory vector containing a large amount of semantic 

information about the meaning of that word. This figure also 

shows that the model has close approximation to the level of  

recognition for unrelated lures.  

 

 

Figure 2. RSA levels of true and false recognition. 

 

Simulation #2: Item-Level Analyses 

Stadler, Roediger, & McDermott (1999) and Gallo & 

Roediger (2002) both published the levels of false 

recognition that are seen with different DRM lists. As both 

of these studies show, there is considerable variability in the 

levels of false recognition elicited by different DRM lists. 

To test the model’s quantitative predictions of false 

recognition, we correlated the levels of false recognition for 

both the model and the behavioral data using the same 

words reported in behavioral data. This allows us to be 

confident that both the memory structure that the model is 

utilizing, and the processing mechanism that is operating on 

these representations, are working together to produce false 

recognition in a manner coherent with experimental data. 

 

Method Levels of false recognition were attained from 

Stadler, et al., (1999) and Gallo & Roediger (2002). Again, 

four DRM lists from the different studies were added to 

form a single study list. The level of false recognition for 

each critical word was recorded across 1000 simulated 

trials. In addition, we computed the raw cosine between the 

critical word vector and the composite vector for each 

critical word (i.e., how much variance is predicted by solely 

by the structural representations without the process 

mechanism). This allows us to test the respective 

contribution of the memory structure and the process in 

creating false recognition. 

 

Results Across the 55 critical words (with repeats 

removed), a significant correlation of r = 0.476, p < 0.001 

was obtained between the data and predictions of the model.  

If the five lists that the model does worst on are removed 

(thief, needle, king, trash, and car), the correlation increases 

to r = 0.649, p < 0.001. To assess what impact the memory 

structure is having on false recognition, the cosine was 

computed between the composite list vector and the 

individual word vector for each list. A correlation of r = 

0.333, p < 0.05 was obtained between the level of false 

recognition and cosine across the 54 lists. This demonstrates 

the semantic representation of words has sufficient power 

within it to predict item-level amounts of false recognition. 

When combined with a simple process mechanism that is 

designed to exploit word structure, we see a better fit to the 

data than either structure or process alone can accomplish. 

Hence, it is the interaction between the structure of memory 

and the process mechanism that produces the superior fit to 

the data, not simply the structure or process alone.  

 

Simulation #3: Effect of the Number of Associates  

Robinson and Roediger (1997) have demonstrated that as 

the number of associates to a critical word contained within 

a study list is increased, a systematic increase in false 

recognition rates to that critical item is also observed. This 

is an interesting study for the RSA model to simulate 

because it suggests that the number of semantic associates is 

the causal factor in determining the false recognition rates of 

a critical item. Hence, we expect a similar pattern of results 

to Robinson and Roediger because the more semantic 

associates that are studied, the more efficiently a critical lure 

should be processed, which in turn should lead to an 

increased hit rate for these items. 

 

Method We used the same lists as Robinson, et al. (1999). 

On each repetition, five DRM lists were selected and 3, 6, 9, 

12, or 15 items from the list were randomly selected and 

added into the current study list. The levels of false 

recognition for the critical lures at the different level of 

associates, as well as the hit rates for the studied items, were 

recorded across 1000 replications. 

 

Results Figure 3 shows the human data and simulated 

results for both the hit rate and the false alarm rate for 

critical words from the Robinson, et al. (1999) study. This 

figure shows that as the number of associates to a critical 

word in a study list is increased, the false alarm rate to the 

critical lure is also increased. The model produces slightly 

more false alarms (especially with 15 associates), but the 

same general trend is observed. This simulation 

demonstrates that high levels of false recognition are seen 

with the RSA model due to the increased amount of 

semantic information contained within a study list’s 

episodic representation.  



 

Figure 3. RSA simulation of Robinson & Roediger (1997). 

 

Simulation #4: Effect of Number of Associates on 

Short-Term Recognition RT and Accuracy 

Coane, McBride, Raulerson, & Jordan (2007) conducted a 

short-term recognition experiment in which they created set 

sizes of 3, 5, and 7 by sampling from a single DRM list. 

Reaction time and accuracy were recorded as a function of 

the number of associates within a list. They found a greater 

RT for critical lures than studied items, and also an increase 

in RT as a function of set size for both word types. In 

addition, they found that the proportion of false alarms to 

the critical lure increases as a function of set size, showing 

that there is a false recognition effect even at small list sizes. 

A compelling feature of the RSA model is that it provides a 

framework to account for both choice probabilities and 

reaction time, making this an attractive study to simulate.  

 

Method As in Coane, et al. (2007), set sizes of 3, 5, and 7 

were created by sampling from DRM lists from the Sadler, 

et al. (1999) set of DRM lists. Reaction time was assessed 

by taking the number of iterations to accept or reject a probe 

as a proxy of RT. Accuracy for both studied items and 

critical lures was assessed for the three set sizes. 

 

Results Figure 4 displays the results for both simulated 

reaction time (top panels) and choice probability (bottom 

panels) as a function of set size, for both the RSA model 

(left panels) and the data from Coane, et al. (2007; right 

panels). As can be seen from this figure the model gives an 

excellent approximation for both reaction time and choice 

probability data as a function of set size. The reason the 

model can capture the reaction time data is that even though 

the composite contains a considerable amount of semantic 

information about the critical word, this word is still not as 

similar as a studied word to the memory store. This means 

that the word is not amplified as efficiently, so it takes 

longer for the composite to become similar enough to be 

accepted or to accumulate enough contradictory information 

to reject the probe. An increase in set size slows responses 

to studied items more than the critical word because the 

unique information for a presented item becomes mixed in 

with a greater amount of information from other items.  

 
 

Figure 4. RSA simulation of Coane, et al. (2007). 

 

Simulation #5: ERP Patterns 

In order to test whether the process that the RSA employs is 

cognitively plausible, we compared the change in activation 

across iterations in RSA with ERP studies examining 

recognition memory. We do not wish to attempt to localize 

this process or propose that there is a specific neurological 

mechanism of this model; instead we simply test whether 

the model’s temporal dynamics change in a similar manner 

as neurological processes seem to. There are two main 

results that we would like to focus on. 

The first ERP result that we wish to test is the ‘N400 

strength effect’ described in Finnegan, Humphreys, Dennis, 

& Geffen (2002).  In this study, subjects made old/new 

recognition judgments to strong words (presented three 

times), weak words (presented one time), and new words. 

The authors found a greater N400 wave for strong items vs. 

weak items, and for weak items vs. new items. The second 

ERP result that we would like to simulate is a study by 

Johnson, Nolde, Mather, Kounios, Schacter, & Curran 

(1997). In this study, the experimenters monitored subject’s 

ERP response during old/new recognition decisions when 

tested in the DRM paradigm. They found a greater 

waveform for studied words vs. critical words, and for 

critical words vs. unrelated new words. The value we use to 

predict activation in the RSA model will be the normalized 

activation value used in the amplification process.  

 

Method In order to simulate the results of Finnegan, et al. 

(2002), list sizes of 50 were created by sampling randomly 

from words within the Toronto Word Pool (Friendly, et al., 

1982). In this list, twenty five words were encoded three 

times (the ‘strong’ words), while 25 words were only 

encoded once (the ‘weak’ words). Then the activation levels 

for both the strong, weak, and new words (attained by 

randomly sampling from the word pool) were recorded 

across iterations.  



To simulate the results of Johnson, et al. (1997), DRM 

lists of size four were created by randomly sampling lists 

from the Stadler, et al. (1999) study. The activations for 

studied items, critical words, and unrelated words (obtained 

by randomly sampling 4 critical words whose list did not 

occur in the study list) were computed across iterations.  

 

Results Figure 5 displays the simulation results for both 

Finnegan, et al. (2002) (top panel), and Johnson, et al. 

(1997) (bottom panel). In the simulation of Finnegan, et al.  

the model produces a higher activation across iterations for 

strong vs. weak words, and weak vs. new words, similar to 

the pattern seen in their study. Strong words are more easily 

amplified within the composite vector compared with weak 

words, and weak presented words are more easily amplified 

compared with unpresented words. In addition, the time 

course of activation change in the model qualitatively 

mimics the N400 pattern found by Finnegan et al.  

 
Figure 5. ERP simulations with the RSA model. 

 

We see a similar pattern of results in the simulation of 

Johnson, et al. (1997), where studied words have the highest 

level of activation, but the activation levels for the critical 

lures are also quite high compared with unrelated lures. This 

demonstrates why the model is able to attain false 

recognition: a greater amount of semantic information about 

the critical lure is contained within memory, so it is 

amplified more efficiently, which in turn makes it easier to 

accept. As with the previous simulation, the dynamics of 

activation change over time nicely match the qualitative 

waveforms presented in Johnson et al. (1997). 

 

Conclusion 

We have described a new model of false recognition built 

on a representation that has proven useful at accounting for 

other elusive effects in memory. Our RSA model is 

successful at simulating a range of false recognition data 

because it fuses a simple process account with a structural 

representation for words generated from experience with 

environmental regularities. Critical lures are more likely to 

share semantic information with studied words and, hence, 

they are more efficiently amplified in the composite 

memory store. Our model leaves much of the complexity 

required to produce false recognition behavior in the 

semantic representations (learned from language), allowing 

it to use a much simpler processing mechanism, and without 

reliance on hand-coded word representations.   
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