Footprint modeling for vegetation atmosphere exchange studies: a review and perspective

Hans Peter Schmid*
Department of Geography, Indiana University, 47405 Bloomington, IN 47405, USA

Accepted 3 April 2002

Abstract
The footprint of a turbulent flux measurement defines its spatial context. With the onset of long-term flux measurement sites over forests and other inherently inhomogeneous areas, and the development of the FLUXNET program, the need for flux footprint estimations has grown dramatically. This paper provides an overview of existing footprint modeling approaches in the critical light of hindsight and discusses their respective strengths and weaknesses. The second main objective of this paper is to establish a formal connection between micrometeorological measurements of scalar fluxes and their mass conservation equation, in a surface–vegetation–atmosphere volume. An important focus is to identify the limitations of the footprint concept and to point out situations where the application of footprint models may lead to erroneous conclusions, as much as to demonstrate its utility and power where warranted. Finally, a perspective on the current state-of-the-art of footprint modeling is offered, with a list of challenges and suggestions for future directions.

Keywords: Footprint; Micrometeorology; Vegetation atmosphere exchange; Modeling; Flux measurements

1. Introduction
Why do we need footprint models? The footprint of a turbulent flux measurement defines the spatial context of the measurement. It is something akin to the “field of view” of the measurement of surface atmosphere exchange. When turbulent flux sensors are deployed, the objective is usually to measure signals that reflect the influence of the underlying surface on the turbulent exchange. Over a homogeneous surface, the exact location of a sensor is not an issue, because the fluxes from all parts of the surface are by definition equal. However, if the surface is inhomogeneous, the measured signal depends on which part of the surface has the strongest influence on the sensor, and thus on the location and size of its footprint.

The growing importance of observational issues over inhomogeneous terrain is illustrated by the number of publications per year relating to the footprint concept. Since 1972, when Pasquill’s original paper on the effective fetch was published, these have been increasing exponentially with a doubling period of about 3–4 years. This development is in parallel with a shift of focus of micrometeorology from “ideal” homogeneous sites to inhomogeneous areas of naturally variable land cover and urban areas. Over inhomogeneous sites, the horizontal and vertical variability of measured fluxes of surface–atmosphere exchange must be accounted for, and the question of spatial...
representativeness of flux measurements arises. In the face of these growing concerns, the footprint concept provides a quantitative tool to establish the spatial frame of reference of surface–atmosphere exchange measurements. Here, the term footprint is used to summarize the notions of effective fetch, source area or sensor footprints, but each of these terms will be defined more formally, below.

In Section 2, the development history of the footprint concept is outlined briefly, starting with notions of fetch and internal boundary layers. This is followed by an overview of different existing flux footprint modeling approaches and their respective strengths and weaknesses. Specific applications of footprint models are mentioned where the context demands this, but a detailed review of footprint applications is beyond the purpose of this paper.

The second main objective of this paper is to review the theoretical foundations of the footprint concept in a critical light, by establishing a formal connection between micrometeorological measurements of fluxes or concentrations of trace gases above a vegetation canopy and their mass conservation equation, in a surface–vegetation–atmosphere volume (Section 3). An important focus is to identify the limitations of the footprint concept and to point out situations where the application of footprint models may lead to erroneous conclusions, as much as to demonstrate its utility and power were warranted.

Finally, a perspective on the future requirements and potential of the flux footprint approach is offered in Section 4, closing with a summary of problems, challenges, and potential research questions in flux footprint modeling.

2. Concept and model approaches of the flux footprint and its variants

The footprint of a measurement is the transfer function between the measured value and the set of forcings on the surface–atmosphere interface. Formally, this notion is expressed in an integral equation, following Pasquill and Smith (1983):

$$\eta(\mathbf{r}) = \int_{\mathcal{R}} Q_\eta(\mathbf{r} + \mathbf{r}') f(\mathbf{r}, \mathbf{r}') \, d\mathbf{r}'$$ (1)

where η is the measured value at location \mathbf{r}, $Q_\eta(\mathbf{r} + \mathbf{r}')$ the distribution of source or sink strength in the surface–vegetation–atmosphere volume, and $f(\mathbf{r}, \mathbf{r}')$ is the footprint or transfer function, depending on \mathbf{r}, and on the separation between measurement and forcing, \mathbf{r}'. The integration is performed over a domain \mathcal{R}. Fig. 1 is a schematic representation of the footprint function and its relation to a sensor at height above the surface. In contrast to radiation footprints (Schmid, 1997), the turbulent transport footprint is not symmetric about the vertical axis of the sensor. Generally, the value of the footprint function or source weight, f, rises to a maximum at some distance upstream and falls off smoothly to all sides. The integral beneath the footprint function expresses the total surface influence on the signal measured by the sensor.

This general relation defines the footprint and, with some limitations, is common to all sensor footprints or related concepts. Differences exist in the type of measured quantity, η (e.g., scalar flux, bulk gradient, Bowen ratio, or scalar concentration over a given background), in the approach to estimate the transfer function, f (e.g., Eulerian analytical or numerical, or Lagrangian stochastic (LS) simulation), in the degree of symmetry and homogeneity assumed in the flow in which f is embedded, and in the specification of the integration domain, \mathcal{R}. In the following, various approaches and variants to the footprint concept are discussed by outlining its development history.
2.1 Internal boundary layers and Pasquill’s effective fetch

In the pre-history of the footprint concept are considerations of internal boundary layer growth, in response to flow across a step-change in the thermal or mechanical surface forcing, going back to the original study by Elliott (1958). Garratt (1990) provides a comprehensive review of internal boundary layer work. In the case of a discrete crosswind discontinuity, the degree of readjustment to new conditions can be described by various boundary layer interfaces of growing depth with distance downwind of the surface transition, based on a balance of horizontal advection and vertical turbulent diffusion. One such interface marks the initial modification of the concentration, flux, or flow field by the downstream surface. The height of this initial modification interface (IMIF) is defined as the height, up to which the flow conditions deviate from the upstream equilibrium by more than a small arbitrary factor (e.g., Peterson, 1969). The height to which the flow is in equilibrium with the downstream surface (the equilibrium interface, EIF) is assumed about 10% of the IMIF height (Peterson, 1969; Perrier and Tuzet, 1991). Elliott (1958) and Schlichting (1968) found that the depth of these interfacial layers in neutral conditions grow with distance from the surface transition in a 4/5 power law relationship. Despite efforts by Panofsky (1973), Rao (1975), and Højstrup (1981), among others, to enhance the physical basis of internal boundary layer growth estimates, the 4/5 power relation between fetch and height was commonly used, and even simplified into an approximate 1/100 height to fetch ratio as a rule-of-thumb for measurements downwind of surface discontinuities (Garratt, 1990). Due to its simplicity, the use of this rule-of-thumb remained widespread, although it was shown to be inadequate and outdated (Leclerc and Thurtell, 1990).

Simple fetch estimates and the internal boundary layer approach become unsuitable, if the problem of surface inhomogeneity is extended to two-dimensional surface patchiness, rather than a one-dimensional crosswind discontinuity. This problem was first addressed by Pasquill (1972), who suggested an analogy between the developing zone of influence downwind from a surface element, and a diffusing plume of a scalar emitted at that surface element. Pasquill (1972) developed his analysis for a “momentum plume”, where the surface elements appear as individual sinks. He postulated that, regarding a particular elementary area in isolation, the momentum deficit that this sink produces at a given height rises to a maximum at a distance downwind and then falls off continuously as distance is further increased. If the momentum deficit plume can be geometrically inverted, it is identical to the distribution of the influence that each elemental surface momentum sink exerts on the momentum deficit at a given reference location above the surface. Pasquill’s assumption of Gaussian diffusion in both vertical and lateral direction, allowed him to adopt Smith’s (1957) reciprocal relation for ground and elevated sources to achieve the plume inversion. He concluded that the functional form of the “momentum deficit distribution” is precisely that contained in the theoretical ground-level concentration distribution from an elevated scalar diffusion source.

Although this is not formally presented in this way by Pasquill (1972), his rationale follows the integral transfer function approach of (1). His inverted “momentum deficit distribution” implies the idea of a footprint transfer function for momentum, and he used the “momentum sink”–“scalar source” analogy to estimate the footprint by a Gaussian diffusion model. Pasquill (1972) defined a surface area of influence, which he termed the effective fetch, bounded by a concentration isopleth of the plume, with the arbitrary value of half of the maximum concentration. The dimensions of this approximately elliptical effective fetch region, relative to a sensor location, depend on the sensor height, the surface roughness, and atmospheric stability. Pasquill’s effective fetch estimates are the first attempt documented in the literature, to account for the spatial context of measurements of some aspect of turbulent exchange over a surface with two-dimensional irregular patchiness.

2.2 The inverted plume assumption

Although Pasquill (1972) obviously considered a flow field that is perturbed by the surface patchiness, the inverted plume assumption contains an inherent contradiction, because it implicitly requires that the surface roughness and stability are uniform in the region. As will be seen, the majority of current footprint models rely implicitly or explicitly on some form of
the inverted plume assumption. Accordingly, careful considerations of its ramifications are warranted here.

In terms of (1), the inverted plume approach assumes that the footprint function, \(f \), is only dependent on the separation vector between source and sensor, \(\mathbf{r}' \), and not on the location, \(\mathbf{r} \), itself, so that it is postulated that

\[
f(\mathbf{r}, \mathbf{r}') \approx f(\mathbf{r'})
\]
(2)

A consequence of (2) is that \(f(\mathbf{r'}) \) must also be independent of \(Q_0 \) in (1). If there is a spatially variable forcing \(Q_0 \) that affects not only \(\eta(\mathbf{r}) \), but also the turbulence field, and thus \(f \), the inverted plume approach is fundamentally flawed. This is obviously the case for the field, and thus \(f \), defined to small length scales, compared to the reference height of footprint considerations.

2.3. The cumulative effective fetch of Gash (1986)

Gash (1986) adopted Pasquill’s (1972) idea to view an area of heterogeneous surface fluxes as an array of elemental sources in a two-dimensional flow approach. He estimated the effect of a limited fetch for evaporation measurements by considering an upwind array of spanwise elemental line sources, each occupying an infinitesimal strip of width \(\delta x \). For a sensor mounted at a height \(z_m \), water vapor diffusing from a distance \(x \) is on average sensed with a concentration \(\rho_v(x, z_m) \). To obtain an equation for this concentration, Gash (1986) applied an analytical solution by Calder (1952) to the basic advection-diffusion equation, assuming neutral stratification and a uniform wind velocity that is independent of height, \(U \). After differentiation with respect to \(z_m \) and integration with respect to \(x \) from zero to a distance \(x_k \), he obtained an equation for the vertical concentration gradient at \(z_m \) as caused by the evaporation \(E \) from a (uniform) strip of streamwise dimension \(x_k \)

\[
\frac{\partial \rho_v}{\partial z_m} \bigg|_{z_m} = - \frac{E}{k_u z_m} \exp \left[- \frac{U z_m}{k_u x_k} \right]
\]
(5)

where \(k_u \) is von Kármán’s constant. With a uniform eddy diffusivity, \(k \), the gradient at \(z_m \) is proportional to the turbulent flux due to sources on the strip \(x_k \). As \(x_k \) approaches infinity, (5) takes the form of the familiar surface layer flux-gradient relation for homogeneous and neutral conditions with unlimited fetch. Taking the ratio of the flux due to \(x_k \) to the homogenous flux \((x_k = \infty) \) as \(F \), leads to the definition of \(x_F \) as the “\(F \)-fraction effective fetch”

\[
x_F = - \frac{U z_m}{k_u \ln(F)}
\]
(6)

(Gash (1986) expressed \(F \) in percent, so that the argument in the logarithm of (6) becomes \(F/100 \).

In (6), \(F \) is an integral footprint function that expresses the upstream-integrated source weight as the portion of a measured flux contributed by sources within a limited fetch, scaled by the total flux from sources in an unlimited fetch (Fig. 2a). Gash (1986) did not discuss a differential footprint function as defined by (1), but, as pointed out by Schuepp et al. (1990), the corresponding \(f(s) = dF/ds \) for
two-dimensional flow follows from (6) as
\[
f(x) = \frac{U_{cm}}{k_{0}u_{*}^{2}} \exp\left(\frac{U_{cm}}{k_{0}u_{*}} x\right)
\]
Clearly, this flux footprint relationship (Fig. 2b) is derived using crude and unrealistic assumptions, but its overall characteristics are the same as those of more sophisticated modern footprint models. In this sense, Gash (1986) is the first study that refers to a form of flux footprint in the way the term is used today in micrometeorology.

2.4. The source area of Schmid and Oke (1988, 1990)

Similar to Pasquill’s (1972) original approach, Schmid (1988) and Schmid and Oke (1988, 1990) (henceforth, SO88/90) used the concentration distribution from a continuous point source of a passive scalar to approximate the footprint function for a sensor mounted at height. The footprint or source weight distribution function provides information about the relative weights of individual point sources. However, from an experimental perspective it is significant to obtain an estimate of what region of the surface is most effectively influencing the measured signal. SO88/90 considered the smallest possible area to be responsible for a given relative weight, \(P \) (half, say \(P = 0.5 \)) to the measured value and termed it the source area of level \(P \). They showed that this source area, \(\Omega_P \), is bounded by a footprint isopleth \(f(x', y', z_m) = f_P \) (see Fig. 1), such that \(P \) is the fraction of the total integrated footprint function, \(\varphi_{tot} \), contained in the source area
\[
P = \frac{\varphi_P}{\varphi_{tot}} = \frac{\int f(x', y', z_m) \, dx' \, dy'}{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x', y', z_m) \, dx' \, dy'}
\]
where \(\varphi_P \) is the integral of the footprint over the source area, \(\Omega_P \). The source area approach combines elements of both Pasquill’s (1972) and Gash’s (1986) earlier work: it considers a two-dimensional area bounded by a footprint function isopleth (like Pasquill, 1972), but in contrast to Pasquill (1972) the bounding isopleth is defined by the fraction of the integrated footprint contained in it, similar to Gash’s (1986) cumulative footprint.

To obtain an estimate for \(f(x', y', z_m) \), SO88/90 used the plume diffusion model by Gryning et al. (1987). In contrast to the earlier footprint work, this model takes account of the non-Gaussian diffusion in the vertical, and the shape of the profile is expressed in terms of Monin-Obukhov (M–O) similarity theory. Using van Ulden’s (1978) analytical solution to the
Eulerian analytic flux footprint models

The term flux footprint was coined by Schuepp et al. (1990). This study was also the first to present a differential footprint model, as defined by (1), for the flux of a passive scalar under neutral conditions. They explored several approaches to the advection-diffusion equation, and then pursued the approximate solution by Calder (1952) further, as proposed by Gash (1986). They found good qualitative agreement between aircraft measurements of CO2 flux profiles across an isolated flat island and predictions by the equivalent of (7). A comparison with footprint calculations based on Lagrangian simulations of particle trajectories by Leclerc and Thurtell (1990) points to two important weaknesses of Calder’s solution: first, the constant $U_{*}h_{0}$ in (7), and second, the limitation to neutral stability.

Both of these limitations were overcome by the footprint model of Horst and Weil (1992). They extended the results of Schuepp et al. (1990) with a more realistic analytic dispersion model that accounts for the effects of atmospheric stability and the variations of wind speed with height within the limits of the surface layer scaling regime (Holtslag and Nieuwstadt, 1986).

The original Horst and Weil model (henceforth, the HW-model) was further developed in a series of papers (Horst and Weil, 1994, 1995; Finn et al., 1996). The currently recommended version of the HW-model is summarized in Horst (1999). Horst and Weil (1992) showed that the dependence of the flux footprint on crosswind location is proportional to the crosswind concentration distribution for a unit surface point source. Like SO88/90 in their source area model, Horst and Weil (1992) used an approximate vertical concentration profile equation proposed by van Ulden (1978) and Horst (1979) to formulate the crosswind integrated flux footprint, f^{C}:

$$f^{C}(x,z_{m}) = - \int_{z_{m}}^{\infty} \bar{C}^{*} \left\{ \frac{\partial}{\partial z} \right\} dz$$

where the crosswind integrated concentration, \bar{C}^{*}, was given by van Ulden (1978) as

$$\bar{C}^{*}(x,z) = \frac{A}{2z} \exp \left\{ - \left(\frac{z}{\delta} \right)^{r} \right\}$$

Here, A and b are given as functions of the exponent (or shape parameter), r, Gryning et al. (1983) provided an approximate formula for r in terms of the mass-weighted mean plume height, $\bar{z}(x)$, and stability. U is the mass-weighted mean plume velocity. Although van Ulden’s solution is analytic, it is
In a critique of the HW-model, Haenel and Grünhage (1999) pointed out that the implementation of (14) as suggested by Horst (1999) causes Φ to overshoot its theoretical asymptotic constraint of unity at large $\bar{z}(x)$. They offered an alternative model that identically complies to the constraint. However, as discussed below, this objective of mathematical exactness is reached only at the expense of physical content.

Haenel and Grünhage (1999) attributed the faulty asymptotic behavior of (14) to the use of M-O similarity profiles in the formulation for the shape factor, r, suggested by Gryning et al. (1983, 1987), instead of power law profiles. van Ulden’s (1978) solution to obtain the concentration distribution from a unit surface point source (10), is based on the use of power laws for wind speed ($\bar{u} = \alpha u^{m}$) and eddy diffusivity ($\bar{K} = \alpha K^{m}$), where α_u and α_K are proportionality constants to be determined empirically. Despite the lack of a physical basis for these power laws, their use is pragmatically justified by their mathematical simplicity, which allows analytical solutions. The shape parameter, r, in (10) is related to the exponents of these power laws as $r = 2 + m - n$ (van Ulden, 1978). However, to introduce similarity theory into the solution (10), Gryning et al. (1983, 1987) suggested to fit power laws to the M-O similarity profiles, to determine the dependence of r on \bar{z}/L (where L is the Obukhov length), and thus indirectly on x through $\bar{z}(x)$. Thus, Haenel and Grünhage (1999) noted that the M-O representation of r gains physical meaning at the expense of some of its original consistency with the profiles of wind speed and eddy diffusivity that are assumed to be independent of x. However, to address the problem of the asymptotic limit, Haenel and Grünhage (1999) proposed to retain in the “power law world” longer in their derivation of an analytical form of (9) and prescribed r to be independent of \bar{z} and thus x. Thus, r is a constant in (10), and it becomes possible to integrate (9) analytically (Haenel and Grünhage, 1999), as expressed
in normalized form by

\[\Phi = A B \left[\frac{2n}{\pi} \right]^{-\frac{m+n}{2}} \exp \left[-\frac{2n}{\pi} \right] \]

(15)

where \(B \) is an analytical function of \(r \) (see Eq. (23) in Haenel and Grünhage, 1999). Applying Schmitt’s conjugate powers for the power laws of wind speed and diffusivity \((m+n = 1)\), they finally reintroduced M–O theory at this stage by expressing it as a function of stability \(\delta_u, \) and measurement height, \(\bar{z}_m/\bar{z}_u \), where \(\bar{z}_u \) is the surface roughness length. Incidentally, (15) is a special case of (14) for conjugate power laws in the specification of \(U(z) \) (Horst, 2001).

To recover the non-normalized flux footprint, \(f^j \), from \(\Phi \) in (14) or (15), or to express \(\Phi \) in terms of the streamwise distance, \(x \), rather than \(\bar{z} \), a practical relation for \(dz/dx \), such as (12), is needed (see (13)).

Both the HW-model and Haenel and Grünhage (1999) follow van Ulden (1978) here, and use M–O similarity profiles for \(K \) and \(\bar{u} \), and ignore the weak dependence of \(p \) on \(s \). The result is an implicit similarity relation for \(dU/dx \) that can only be solved for \(\bar{z} \) numerically.

By remaining in the “power law world” even for the evaluation of (12), Kormann and Meixner (2001) avoided this problem. They continue using the power law profiles for \(K \) and \(\bar{u} \) in (12) and were thus able to integrate it analytically. The resulting explicit equation for \(\bar{z} \) allows the determination of the mean plume velocity \(U \), which leads to an alternative form of the crosswind integrated concentration distribution (10) first proposed by Lin and Hildemann (1996) that is explicit in \(s \) and \(\bar{z} \). Using K-theory and the power law profile for \(K \), the crosswind integrated footprint follows directly as (compare Eqs. (17)–(21) in Kormann and Meixner, 2001):

\[f^j(x, z) = \frac{1}{s^r[1+1]} \left(\frac{a_{k,m}}{\gamma} \right)^{[1+m]/r} \]

\[\times \exp \left[-\frac{a_{k,m}}{r} \right] \]

(16)

where \(\Gamma \) is the gamma function, and all other symbols are as defined above.

Kormann and Meixner (2001) introduced surface layer theory only at this stage, by fitting the power laws for \(K \) and \(\bar{u} \) to M–O similarity relations. This Eq. (16) is an explicit algebraic relation in \(s \) and \(\bar{z} \), and thus, it constitutes the only truly analytical flux footprint model based on realistic profiles of \(K \) and \(\bar{u} \) to date. Another explicit algebraic footprint expression by Hsieh et al. (2000) is a hybrid approach that fits an analytic solution to results from a numerical LS model, and is further discussed in the next section.

As it does not depend on Schmitt’s conjugate powers assumption, Kormann and Meixner’s (2001) solution is thus both more consistent and more general than the one by Haenel and Grünhage (1999). It contains the simple solution of Gash (1986) and Schuepp et al. (1990), if an eddy diffusivity power \(n = 1 \) is prescribed, and is equivalent to Haenel and Grünhage (1999) if conjugate powers are assumed.

Clearly, however, the approaches of Haenel and Grünhage (1999) and Kormann and Meixner (2001) are very similar: they aimed at avoiding the inconsistent asymptotic behavior of the HW-model, and at decreasing the computational expense in practical footprint evaluations. They achieved this goal in a pragmatic way, by sacrificing physical content to mathematical simplicity. However, in today’s terms, the computational expense of expressions like the HW-model is trivial, unless they need to be evaluated a large number of times. In addition, if the HW-model model is scaled by its “untheoretical” asymptotic value, to force it to unity (as is often done, in practice), the problem with the asymptotic limit is removed.

All analytical footprint models presented here assume Gaussian distributions in the crosswind direction and are restricted to surface layer scaling conditions. They also all rely on the inverted plume assumption (2). Thus, all analytical models are applicable only in areas where the profiles of \(K \) and \(\bar{u} \) are horizontally homogeneous, and at heights where the effects of a finite mixing depth are negligible. In addition, all these models assume that turbulent diffusion in streamwise direction is small compared to advection, a form of Taylor’s hypothesis, and are thus confined to flow situations with relatively small turbulence intensities \((I < 0.5, \text{ suggested by Willis and Deardorff, 1976})\).

2.6. Forward LS flux footprint models

2.6.1. Theory

An alternative to solutions of the Eulerian advection-diffusion equation is the LS description of the trajectories of passive particles in a turbulent flow.
Its application to footprint modeling assumes that the dispersion of a passive tracer can be represented by the trajectories of a finite number of particles that are completely independent of each other. For a review of LS dispersion modeling, see e.g. Rodean (1996) or Wilson and Sawford (1996). The trajectory or time evolution of the position, \(x_i \), (\(i = 1, 2, 3 \)) of such a particle is given by

\[
\text{d}x_i = u_i \text{d}t + \text{d}x_i \tag{17}
\]

where \(u_i \) is the Lagrangian velocity in the \(x_i \)-direction and \(\text{d}t \) is a time increment. In turbulent flow, it is assumed that the Lagrangian velocity follows a first-order Markov process, as given by the Langevin equation

\[
du_i = a_i(x_i, t, u_i) \text{d}t + b_i(x_i, t, u_i) \text{d}\xi \tag{18}
\]

Here, the coefficients \(a_i \) and \(b_i \) are non-linear functions of the position, time, and velocity, and \(\text{d}\xi \) is a Gaussian random process with zero mean and a variance of \(\text{d}t \). The first term on the right represents the deterministic part of the velocity increment, and the second term is the stochastic forcing. The nature and relative weighting of these parts is given by \(a \) and \(b \). These functions are designed to account for the stochastic nature of the turbulence field and are derived from the budget equations for the Eulerian probability density function of \(u_i \), the Fokker–Planck equation (Thomson, 1987). In the specification of \(a \) and \(b \) it is essential to include a drift correction term, to satisfy the well-mixed condition (Thomson, 1987). Hsieh et al. (1997) compared several different approaches to the drift correction. They conclude that cumulative footprint estimates are not very sensitive to the form of drift correction, except for unstable conditions, even though some of the approaches do not satisfy the well-mixed condition.

To consider the effect of a single particle source in isolation for footprint applications, (17) and (18) are commonly implemented with perfect reflection boundary conditions (Wilson and Flech, 1993) at the surface and at the mixed layer height (if appropriate).

In contrast to the Eulerian models discussed above, the LS approach requires numerical integration. To obtain numerical solutions for (18), the distributions of the Eulerian flow velocities, and turbulence statistics need to be specified for the domain of the model. Thus, the structure of the turbulent flow is external to the model itself, which allows the adaptation of this approach to inhomogeneous turbulence. One of the problems discussed in the context of the analytical solutions to the Eulerian advection-diffusion equation, is the disparity between the need for realistic profiles of velocity and diffusivity, and the need for mathematical simplicity. All strategies to cope with this problem ultimately refer to (one-dimensional) similarity relationships to describe the flow and eddy diffusion profiles, and thus are constrained to homogeneous turbulence. In addition, all of them neglect turbulent diffusion in streamwise direction and are thus confined to situations where advection dominates streamwise diffusion. The primary advantage of the LS approach is that these constraints can be relaxed. In principle, LS models can account for three-dimensional turbulent diffusion and non-Gaussian inhomogeneous turbulence (e.g., Rotach et al., 1996; Reynolds, 1998). On the other hand, LS models are only as good as the turbulence representation they use to simulate the particle trajectories, and the quality of these in complex flows is often questionable.

Footprint models using the forward LS approach simulate the release of a large number of particles from a point source into a stationary turbulence field. The forward-in-time integration at discrete intervals of (18) and (17) for each of these particles provides a modeled distribution of positions and velocities. To relate this distribution to the vertical flux of material, it is assumed that the ensemble flux field in the flow is correctly represented by the modeled joint distributions of vertical velocity and position of the particles (i.e., the concentration).

The following demonstrates how footprint function values can be determined from a discrete number of LS model derived particle velocities and positions. Following van Dop et al. (1985), the ensemble concentration can be expressed in terms of a conditional probability density function for the particle cloud, so that the footprint of a measurement at \((0,0,z_m)\) is (following the notation of Wilson and Swaters, 1991)

\[
f(x, y, z_m) = \int_0^\infty \int_{-\infty}^\infty \int_{-\infty}^\infty \text{p}(0, 0, z_m, w, f(x, y, z_m, t)) \text{d}w \text{d}x \text{d}y \tag{19}
\]

where \(z_m \) is the source height, and \(p(0, 0, z_m, w, f) \) is the probability that a particle released at \((x, y, z_m, t)\) will at time \(t \) lie in an
elemental volume, \(dx dy dz\), centered on \((0, 0, z_m)\), with a vertical velocity of \(w \pm dw/2\). With a coordinate transformation equivalent to the inverse plume assumption, \(p(x, y, z_m, t)\) is equivalent to \(p(x, y, z_m, t)\), \(t=0, z_m, t')\). For particles released every time step \(dt\), from a steady state source at \((0, 0, z_m)\), \(w(x, y, z_m, t, x)\) is the mean vertical velocity of particles that are within a finite elemental volume \((dx dy dz)\) centered on \((x, y, z_m)\), and \(p(x, y, z_m, t)\) \(x dy dz\) is the probability that particles, released from \((0, 0, z_m)\), pass through the elemental volume during a time interval \(dt\). The discrete estimate of the footprint then becomes

\[
f(x, y, z_m) = \int p(x, y, z_m, 0, 0, z_m) dt\tag{20}
\]

Using the particle positions and velocities computed from (17) and (18), \(p(x, y, z_m, 0, 0, z_m)\) are obtained from

\[
\langle w \rangle = \frac{1}{N} \sum_{j=1}^{N} \left[\frac{dz}{dy} \right]_{j} \text{sign}(j) \tag{21}
\]

\[
p(x, y, z_m, 0, 0, z_m) \approx \frac{1}{N} \frac{dn}{8x dy dz} \tag{22}
\]

where \(dn\) is the number of particles inside the elemental volume, and \(N\) is the total number of particles released at \((0, 0, z_m)\). For small time steps, \(dt \to dt\), and for an infinitesimal layer thickness, \(dz \to dz\), so that over an infinitesimal horizontal area element \((dx dy)\) centered on \((x, y, z_{m})\), the footprint value is estimated as \(\langle w \rangle\) (Hoeh et al. 2000)

\[
f(x, y, z_{m}) \approx \frac{1}{N} \frac{d^2}{dx dy} \times [n_{1}(x, y, z_{m}) - n_{2}(x, y, z_{m})] \tag{23}
\]

where \(n_{1}\) and \(n_{2}\) are the numbers of particles crossing level \(z_{m}\) within \((dx dy)\) in upward and downward direction, respectively, and \(n_{1} + n_{2} = dn\).

As required by the conservation of mass in (1), the integration of (23) over the horizontal plane becomes unity. In practice, the evaluation of \(n_{1}\) and \(n_{2}\) is performed over discrete cells of a grid, leading to a discrete footprint distribution that needs to be smoothed. As with the analytical models, footprint distributions calculated from a single point source, require the inverse plume assumption and are thus dependent on horizontal homogeneity of the turbulence field.

2.6.2. LS footprint models for flow above short vegetation

A footprint model that follows an analogous approach to (18) and (23) was first presented by Leclerc and Thurtell (1990). Their two-dimensional model considered Lagrangian dispersion in vertical direction by Gaussian turbulence, and advection with the mean flow in streamwise direction. The flow and turbulence profiles were described by standard M-O similarity relations. They presented model results of the crosswind integrated footprint over a range of conditions and demonstrate a strong dependence on measurements height, roughness and stability (in decreasing order of magnitude). The results for neutral stability were compared to the simple analytical model by Schuepp et al. (1990), who found good qualitative agreement between the two approaches, and quantitative agreement if the Schuepp et al. (1990) model uses the local wind velocity at measurement height, rather than the layer average velocity (see (7)). Leclerc and Thurtell (1990) also presented various curves of the cumulative footprint as a function of fetch, in analogy to Gash (1986).

Horst and Weil (1992) used a similar approach, following Thomson’s (1987) general stochastic model to examine their assumption of the relative insensitivity of the normalized (analytical) footprint (13) to changes in roughness and stability, if plotted against \(U/U_{m}\). They found excellent agreement for near-neutral conditions on both the stable and the unstable side.

The high level of agreement between the analytical and these early stochastic footprint models is not surprising, as they all essentially are adapted to M-O similarity scaling conditions in the surface layer. Indeed, Finn et al. (1996) showed in a tracer experiment that the analytical models of Horst and Weil (1992, 1994) and the stochastic models of Leclerc and Thurtell (1990) also agree, at least qualitatively, with flux measurements of a passive tracer released in a horizontally homogeneous surface layer over short vegetation. Thus, these pioneering works on stochastic footprint modeling paved the way to the high level of acceptance that the footprint approach now has in the turbulent flux measurement community. By demonstrating that the LS approach and a flux computation method like (23) is valid, they pointed towards its application to conditions that cannot be simulated by analytical models using M-O similarity profiles.
Weil and Horst (1992) presented flux footprint estimates for measurements in the convective boundary layer. They used a two-dimensional stochastic model similar to the one used in Horst and Weil (1992), but here allowed negatively skewed vertical turbulence, simulated by the superposition of two Gaussian distributions, following Sawford and Guest (1987) and Weil (1990). As their emphasis is on the convective mixed layer, they used a uniform wind velocity \(U \) and the mixed layer similarity profiles of turbulence statistics of Weil (1990), derived from a combination of large-eddy simulations (LESs), convection tank experiments and observations. These profiles are expressed in terms of \(z_i \), the relative height in the mixed layer (\(z_i \)), and the convective scaling velocity, \(u^* \). Particles are assumed to be perfectly reflected at the capping inversion, \(z_i \), as well as at the surface. Although horizontal velocity fluctuations are significant in the convective mixed layer, these were ignored by Weil and Horst (1992).

Their results show self-similar printwith a streamwise dimension (defined as the distance between the points where the footprint value falls to half of its maximum) of the order \(U / u^* (z_3 / z_i)^{1/3} \). They also show that the surface layer model of Horst and Weil (1992) is able to account for convective conditions fairly well as long as the measurement height is well below 0.1\(z_i \). For greater measurement heights, the surface layer model grossly overestimates the growth of the mean plume height, and thus the footprint value. This is due at least in part to the effect of particle reflection at height \(z_i \) that the surface layer models ignore. It must be expected that the neglect of horizontal turbulence significantly affects the validity of Weil and Horst’s (1992) results. As shown by Baldocchi (1997), the effect of horizontal turbulent diffusion is to counter the action of advection, by reducing the streamwise scale of the footprint and moving its maximum closer to the sensor. In situations where horizontal turbulence intensity is high, part of the footprint can even extend in downstream direction of the sensor (see also below).

Wilson and Swaters (1991) followed a Lagrangian framework for the surface and mixed layers, to explore the “origin” of fluid elements spotted by a sensor aloft, but then provided analytical solutions to describe the budget of various conditional particle PDFs that are interpreted as concentrations, as \(N \) in (18). They differentiated between the flux and concentration footprints, defined in the usual way of (1), and introduced a “distribution of contact distance”. They defined the “contact distance” as the horizontal distance, at which a fluid element that contributes to a measurement aloft, has last been in contact with the surface. To model this distribution, Wilson and Swaters (1991) assumed Gaussian turbulence, so that the surface distribution of particles released aloft is exactly reciprocal to the distribution aloft of particles released at the surface (Smith, 1957). To ensure that only the last surface contact is taken into account, they used a perfect surface absorption boundary condition (and perfect reflection at \(z_i \)). The resulting distribution of contact distance is not generally identical with the concentration footprint: the latter is also akin to a distribution of surface touchdowns, but allows for multiple touchdowns with perfect reflection. In purely Gaussian turbulence, the distribution of contact distance coincides with a concentration footprint for particles of a tracer that are perfectly absorbed upon contact with the surface. However, with this restriction, it is difficult to envision a process that would allow the surface release of the tracer in the first place. In their conclusions, Wilson and Swaters (1991) stressed the importance of properly accounting for inhomogeneous and non-Gaussian turbulence in LS modeling. According to Reynolds (1998), this goal has been achieved by Rotach et al. (1996).

Hsieh et al. (2000) presented a hybrid approach, combining elements from Calder’s (1952) analytical solution with results from an LS model. They used Thomson’s (1987) model, with turbulence considered in the vertical only, to estimate the flux footprint according to a crosswind integrated version of (23) over a range of stabilities, roughness lengths and measurement heights. In the analysis of their results, they non-dimensionalized Gash’s (1986) effective fetch \(D \) by the Obukhov length, and accounted for the effects of stability by the introduction of two similarity parameters, \(D \) and \(P \), so that

\[
\frac{z_o}{L} = -\frac{1}{k^3 \ln P} D \left(\frac{z_o}{L} \right) P
\]

where \(z_o = z_0 (\ln(z_0 + z_o) - 1 + z_o + z_0) \) follows from the layer-averaged logarithmic wind profile as an expression for \(U \) in (6). The parameters \(D \) and \(P \) are found by regression of (24) to the stochastic model results for unstable \((D = 0.28; P = 0.59) \), near-neutral
(D = 0.97; P = 1), and stable (D = 2.44; P = 1.33) stratification. Rearrangement and differentiation of (24) with respect to x leads to an approximate analytical expression for the footprint (compare (7))

\[
f(x) = \frac{1}{k_{x}^{x}} D_{x}^{2} (k_{z})^{-1-P} \exp \left[- \frac{1}{k_{x}^{x}} D_{x}^{2} (k_{z})^{-1-P} \right]
\]

A comparison of (25) with the numerical stochastic results and with the analytic model of Horst and Weil (1992) show good agreement in near-neutral conditions, and agreement of the peak footprint location and with the analytic model of Horst and Weil (1992) show good agreement in near-neutral conditions and with the analytic model of Horst and Weil (1992). A comparison of (25) with the numerical stochastic results and with the analytic model of Horst and Weil (2000), the similarity parameters D and P are optimized for the integral flux expression (24). The agreement with the stochastic model of both the peak location and the streamwise extent of the footprint could possibly be enhanced, if the parameters were optimized for the differential footprint expression (25) instead.

2.6.3. LS footprint models for flow over tall vegetation

The first footprint model to be developed for use within and over vegetation canopies was presented by Baldocchi (1997). The LS model he used is based on (18) and Thomson (1987), with Gaussian turbulence in neutral or unstable conditions and separated the flow into three sub-layers: a surface layer, where M–O scaling applies, a roughness sublayer below a height h, and a canopy layer above h. Streamwise turbulence reduces the extent of the footprint and moves its peak downwind considerably. Similarly, the canopy flux footprint for sources on the forest floor is shown to be much contracted compared to those evaluated in the surface boundary layer. Baldocchi (1997) only considered the footprint for sources on the forest floor, but his model can easily be adapted to source locations at any height within the canopy layer.

Raman et al. (2000) built on the approach of Baldocchi (1997) and presented a footprint model for forest canopies based on a three-dimensional LS model. This model follows (18), and satisfies the well-mixed condition, but follows Kurbanmuradov and Sabelfeld (2001) for the determination of a and b. They used Gaussian turbulence in neutral or unstable conditions and separated the flow into three sub-layers: a surface layer, where M–O scaling applies, a roughness sublayer below a height h, and a canopy layer above h. The parameterization of the flow statistics follows standard M–O similarity relations for the surface layer. The mean velocity and its vertical gradient in the roughness sublayer are treated following Cellier and Brunet (1992), and inside the canopy layer, an exponential decrease is assumed, as in Baldocchi (1997). For the velocity standard deviations (σu, w/u) no roughness sublayer is considered, and the stability dependent standard surface layer relation links directly to a linear decrease form the value at h in the canopy layer, as in Baldocchi (1997). Similarly, the vertical momentum flux is constant above h and decreases exponentially in the canopy (see Baldocchi,
The only second-order statistic where a three layer approach is followed is the dissipation rate, ε. Here an asymptotic matching function is used to link the surface layer profile (above z_*) to an assumed value at h. Below h, ε is reduced, using an ad hoc function to simulate the qualitative behavior of ε in canopy flow reported in Kaimal and Finnigan (1994).

The vertical gradients of the mean velocity are available in analytical form in Rannik et al. (2000) for the three sublayers. However, as in Baldocchi (1997), the gradient profiles are discontinuous at the canopy height. A forthcoming sensitivity analysis by M.G. Villani (personal communication) demonstrates that such profile discontinuities at the canopy height affect the resulting footprint peak values by 30% or more for scenarios where the principal exchange is with sources (or sinks) at the canopy height.

Both Baldocchi (1997) and Rannik et al. (2000) used state-of-the-art turbulence parameterizations through the canopy. Thus, the inconsistencies of these parameterizations are more indicative of the lack of a unified framework to describe turbulence statistics in and above vegetation canopies, than deficiencies of these models. Nevertheless, Rannik et al. (2000) presented interesting results that are significant for future developments of footprint modeling over forest canopies.

They compared the footprints for various source configurations, namely sources at the forest floor, at canopy height, and a distributed source proportional to the vertical profile of leaf area density. As expected, the peak of the canopy-top footprint is much steeper and closer to the sensor than the forest floor footprint, because the vertical separation between source and sensor is smaller for the canopy source. However, the peak distance of the distributed source footprint is not significantly different from the canopy-top release, but it is much broader and its upwind tail approaches that of the forest floor release. For a relatively low measurement height of $z/h = 1.7$, a considerable portion of all three of these footprint estimates comes to lie downwind of the sensor, due to the effect of streamwise turbulence. They also evaluated the sensitivity of the importance of in-canopy flow to measurement height, compared to a pure atmospheric surface layer (ASL) footprint with an effective release height at $z_{m0} = d + z_0$. In essence, this sensitivity test explores the importance of accounting for the characteristics of the flow and turbulence inside and below the forest canopy, with a model such as Baldocchi (1997) or Rannik et al. (2000), as opposed to the use of (e.g.) one of the analytical footprint models discussed above. These comparisons are presented for three measurement heights: $z_{m0}/h = 1.3, 2, 4$. For measurements close to the canopy-top, the "forest" characteristic is quite pronounced, and especially the upwind tail of the footprint is underestimated by the ASL models. For measurements higher above the forest, the two model approaches converge, but Rannik et al. (2000) showed that streamwise turbulence remains important even for measurement heights exceeding $z_{m0}/h = 4$. A portion of the footprint extends downwind of the sensor, even for the ASL model, but the relative amount decreases with measurement height.

All models and approaches for flux footprint calculations discussed so far rely on the inverse plume assumption (2) and thus are valid only in horizontally homogeneous flow. Luhar and Rao (1994) explored the variations in footprint estimates, if the footprint is allowed to develop in an internal boundary layer following a step change in surface roughness and surface moisture. Turbulence and flow statistics were provided by a second-order closure model. Obviously, the inverse plume assumption (2) cannot be used in this situation. In their two-dimensional framework, Luhar and Rao (1994) handled this problem by simulating up to 30 surface line sources, located at various distances downwind of the step change. Each of these line sources was set to release 10^4 particles and modeled with the two-dimensional LS model by Luhar and Britter (1989). Luhar and Rao (1994) reported good agreement between the fluxes evaluated from the footprint estimates, using (1), and those evaluated by the second-order closure model. This result raises confidence in the robustness of the footprint concept, even for extensions to horizontally inhomogeneous conditions. However, it comes at the expense of a significant increase in computational expense, in direct proportion to the number of sources needed to describe the developing flux field.

2.7. Backward LS flux footprint models

Flesch et al. (1995) introduced a backward-in-time LS dispersion approach for fluid particles, in analogy to the well-known back-trajectory approach of
The turbulent dispersion of a scalar in a continuum consists of an infinite number of trajectories. The forward LS approach randomly samples a subset of trajectories emanating from a single point source, or from a finite number of point sources at pre-defined locations. The backward-time LS approach considers only those trajectories that pass through a pre-defined sensor location, but is not limited to any particular number or distribution of potential sources for the material carried along those trajectories. Both approaches assume that the finite number of trajectories, simulated by the model, describe the ensemble behavior of the dispersing scalar material. The incremental “mass loading” of a forward particle, \(C(x_0) \), released from an incremental source, by the “th fluid element, becomes \(Flesch et al., 1995 \)

\[
\dot{C}(x_0) = \frac{1}{N} \sum_{j=1}^{N} \frac{\delta m_j(x_0)}{\delta V}
\]

where \(w_j(x_j) \) is the velocity of “th touchdown within the elemental source, by the “th fluid element.

\[
F(x_0) = \sum_{j=1}^{N} \frac{w_j(x_0)}{\delta V}
\]

with (29) and (1) the flux footprint is estimated by a backward-time LS model as

\[
f(x) = \frac{2}{N \delta V} \sum_{j=1}^{N} \frac{w_j(x)}{|w_j|}
\]

In (30), the \(x \)-dependence of the footprint is implied in the location at which the touchdowns occur. In homogeneous flow, the forward and backward approaches are equivalent (Flesch et al., 1995). However, the most significant advantage of the backward approach is that it obtains the footprint distribution directly, without depending on an inverse plume.
The backward approach is thus a potentially very efficient method to estimate a flux footprint in horizontally inhomogeneous flow (Kljun et al., 2000b). An additional benefit of the backward approach is that, for a given sensor location, any source geometry may be considered in post-processing, without the need to re-run the model, if the trajectory positions and velocities are stored. The “residence time” concept can easily be expanded to reference surfaces (or infinitesimal layers) away from the surface (e.g. at varying levels in a vegetation canopy) where the fluid element is not reflected, but moves according to the given velocity statistics. In contrast, the model needs to be re-run for every new sensor height, whereas in the forward approach, the footprint adjustment to different sensor heights can be achieved in post-processing, albeit only in horizontally homogeneous conditions.

The backward LS approach to flux footprint modeling is relatively new, and only little experience with it has accumulated since the publication of Flesch (1996). Kljun et al. (1999, 2000a,b, 2002) have adopted the three-dimensional version of the LS model by Rotach et al. (1996) to run in backward-time mode. This model is unique in that it is able to simulate a continuous range of stabilities from stable to convective, while satisfying the well-mixed condition of Thomson (1987) everywhere. Kljun et al. (1999, 2000a,b, 2002) demonstrated the qualitative and quantitative equivalence of their backward LS footprint estimates to simple analytical schemes, such as Horst and Weil (1992) and the flux source area of Schmid (1994, 1997), if the model conditions are similar. Kljun et al. (2002) addressed some of the challenges of backward LS footprint modeling in detail.

As seen in (30), the footprint depends critically on the initialization of the vertical velocity distribution at the sensor location (i.e., the backward “release point”). It turns out that the correct correlation between vertical and streamwise velocity fluctuations is crucial in this context. The construction of initial velocity distributions that comply to measured single and joint probability distributions is not trivial for all atmospheric stabilities. This is achieved by letting the model tune itself, by building up the distributions in a “spin-up” period, before the trajectories are launched. In this spin-up, velocity increments are computed according to the backward version of (18), but the corresponding incremental displacements (17) are ignored, so that the particles are essentially idling on the sensor point.

Kljun et al. (2002) demonstrated that the backward LS footprint approach of Flesch (1996) has matured sufficiently for the development of applications in horizontally inhomogeneous or non-stationary flow and turbulence configurations. If such developments are successful, they hold the promise of significant progress towards an efficient footprint model that is applicable in realistic flow and vegetation canopy geometries.

2.8. LES-based approach to footprint modeling

In principle, any two- or three-dimensional model that solves the Navier–Stokes equations and some form of conservation of mass equation, with suitable initial and boundary conditions, can be used to compute the dispersion of a scalar from arbitrary sources, and the footprint of a reference location in the model domain. In particular, LES models (e.g., Mason, 1994) can provide a nearly complete representation of the essential flow structures responsible for scalar transport, depending on the model resolution and the order of closure at the subgrid scale. The operation of LES models is extremely resource intensive, with respect to computer CPU time, memory and storage capacity, and post-processing effort. This computational expense typically grows with the third to fourth power of the model resolution (spatial and temporal), and therefore with the degree to which horizontal or vertical inhomogeneities are resolved. Thus, in practice, most LES applications in the atmospheric boundary layer have been limited to idealized surface configurations, with periodic boundary conditions, and simple or highly symmetric inhomogeneities. They typically perform best in convective conditions, when large-eddy structures are dominant. These are also the conditions where ensemble average models (particularly K-theory models) perform notoriously badly.

In this sense, LES models (and also higher-order ensemble average models) are in a different class of models from the footprint models we have discussed so far. For a given model scenario, such models can simulate both the turbulence statistics, and the scalar flux field that results from them. In contrast, conventional footprint models, evaluate the scalar flux field based on imposed turbulence statistics (LS-based
models) or based on a ensemble closure assumption (K-theory) and imposed mean similarity profiles (analytical models). The high computational expense of LES applications makes their use for routine diagnostic footprint evaluations impractical. However, as research and development tools, LES-based footprint computations can be extremely valuable. They can serve to cross-compare and validate other footprint models, or to provide the flow and turbulence statistics to drive LS-based footprint models. Particularly in conditions where the flow and turbulence field is not well-described by self-similar profiles (e.g., forests, inhomogeneous areas, roughness sublayers, convective conditions), LES-based turbulence statistics can be invaluable.

The first LES application to footprint modeling is by Hadfield (1994). In this work, a horizontally homogeneous LES for convective conditions produces the velocity field to drive a forward LS footprint model. Lagrangian particle velocities are composed of a resolved part and a subgrid part. The resolved part is interpolated from the gridded LES velocity field, and the subgrid part uses the subgrid kinetic energy to construct an LS model that satisfies the well-mixed condition, following Legg and Raupach (1982). The vertical flux distribution in the lower portion of the boundary layer (\(z_m/z_i = 0.18\)) due to a continuous surface point source agrees qualitatively with analytical footprint models, such as the HW-model or Schmid (1994). Hadfield (1994) also considered the flux distribution due to various scalar source distributions. However, as the turbulence field remains unchanged, the footprint itself is not affected by that.

Leclerc et al. (1997) used a slightly different approach. They used the LES model of Moeng (1984) and added a passive scalar equation. They initially spun-up the model without any scalar dispersion, until it had reached a quasi-steady state, with a mean velocity of \(U\) along the x-axis. Instead of a point source and the computation of Lagrangian trajectories, like in Hadfield (1994), they followed Nieuwstadt and de Valk (1987) and released an instantaneous surface line puff along the streamwise axis, with a cross-section of one grid cell. With \(z = U/t\), the time evolution of the scalar dispersion due to the instant line puff is equivalent to the streamwise development of a continuous elemental volume source. However, with only a mean streamwise velocity used for the coordinate transformation, the effects of streamwise turbulence are neglected. Thus, in Leclerc et al. (1997) the dispersion of the scalar is entirely simulated in a Eulerian framework by the LES model, without the need for an embedded LS model. The crosswind integrated flux footprint then follows directly from \(T(x) = d\bar{T}/dx\).

Leclerc et al. (1997) compared this LES footprint with the analytical model of Horst and Weil (1992), the LS model of Leclerc and Thurtell (1998), and results from the tracer release of Finn et al. (1996). The agreement between the models is very good in the upper part of the surface boundary layer (\(10\%\)). Closer to the surface, the subgrid effects of the LES become significant, but at \(z_m = 10\, \text{m}\), where the tracer flux measurements are available, the agreement is still within the uncertainty of the measurements. There is some indication that the peak of the measured fluxes lies closer to the source than predicted by either of the models. As none of the models compared here account for streamwise turbulence, it is expected that their footprints are too far upstream (see, e.g., Rannik et al., 2000; Kijii et al., 2002).

Su and Leclerc (1998) used the LES of Su et al. (1998) for neutral stability flow in a forest canopy and the surface layer above, to evaluate scalar dispersion from sources at three different heights in the canopy layer and at the forest floor. The model domain is homogeneous in both horizontal directions and the sources are simulated as infinite spanwise lines with a cross-section of one grid cell. Instead of releasing an instantaneous puff, as in Leclerc et al. (1997), these sources are treated as continuous. For measurement heights below the source the footprint is negative at small distances, as expected, and then becomes slightly positive at greater distances. Qualitatively, the footprints due to sources below the measurement height correspond closely to those presented by Baldocchi (1997) and Rannik et al. (2000). For the forest floor source Su and Leclerc (1998) reported a double maximum of the flux footprint. However, this is not likely a significant result, but rather reflects the stochastic nature of all LESs, if the spanwise and temporal integration is finite (H.-B. Su, personal communication).

Both Leclerc et al. (1997) and Su and Leclerc (1998) concluded that these early applications of LES to footprint modeling confirm the general validity of the approach. Further simulations are needed to evaluate the influence of variable canopy morphology,
The order of presentation in Table 1 is chronologically of a trace gas, C, and its biosphere–atmosphere exchange. The conservation equation over a volume V. For convenience, this control volume is commonly taken to be a rectangular box $(\pm \delta x, \pm \delta y, \pm \delta z = \delta m)$, centered on an arbitrary origin, up to the height of the flux sensor, z_m. The conservation equation can then be written in tensor notation with the usual summation convention:

$$\text{NEE}_C = \frac{\delta m}{V} \int_{-\delta y}^{\delta y} \int_{-\delta x}^{\delta x} \int_{z_m}^{\infty} \left[\frac{\partial C}{\partial t} + \frac{\partial u C}{\partial x} + \frac{\partial v C}{\partial y} + \frac{\partial w C}{\partial z} + R_C \right] \, dx \, dy \, dz$$

(31)

In (31), overbars denote ensemble averages, primes are deviations from the average, NEE_C is the net ecosystem exchange of C at the vegetation/soil–air interface, averaged over the horizontal area of the box $(\pm \delta x, \pm \delta y)$, and R_C denotes net chemical sources or sinks of C in the air volume. The terms in (31), from left to right, indicate that NEE_C is balanced by the storage change of C in the box, the mean mass flow divergence components, turbulent transport, and any transformations occurring in the air volume of the box. This equation can be somewhat simplified without much loss of generality. The flux at the interface is given by the left-hand side (LHS) of (31), so that the turbulent flux at the lower boundary vanishes. If mean horizontal advection is considered much larger than the horizontal divergence of the turbulent flux, the turbulent flux term reduces to the horizontal integral of $F_C(z_m) = \overline{w C}$ over $(\pm \delta x, \pm \delta y)$. Here, we will not consider gas species that are chemically reactive in the atmosphere, so that the last term in (31) is neglected. If z is aligned with the horizontal streamwise direction (u), advection reduces to a streamwise term and a vertical term. Using the incompressible continuity, (31) becomes

$$\text{NEE}_C = \frac{\delta m}{V} \int_{-\delta y}^{\delta y} \int_{-\delta x}^{\delta x} \int_{z_m}^{\infty} \left[\frac{\partial C}{\partial t} + \frac{\partial u C}{\partial x} + \frac{\partial v C}{\partial y} + \frac{\partial w C}{\partial z} - F_C(z_m) \right] \, dx \, dy \, dz$$

(32)

Sensors for turbulent flux measurements are ideally placed above an area that is homogeneous
<table>
<thead>
<tr>
<th>Model (principal reference)</th>
<th>Inverted plane</th>
<th>Inhomogeneous/</th>
<th>a/</th>
<th>Domain/</th>
<th>Solution approach</th>
<th>Assumed profiles</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal</td>
<td>Vertical</td>
<td></td>
<td>(height range)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasquill (1972)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ASL</td>
<td>Analytic</td>
<td>Uniform</td>
</tr>
<tr>
<td>Gaul (1986)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>N-ASL</td>
<td>Analytic</td>
<td>Uniform</td>
</tr>
<tr>
<td>Schmidt and Oke (1990)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>US-ASL</td>
<td>Analytic, DA</td>
<td>M-O</td>
</tr>
<tr>
<td>Scheppe et al. (1990)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>ASL</td>
<td>Analytic</td>
<td>Uniform</td>
</tr>
<tr>
<td>Lecoeur and Thurtell (1990)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>ASL</td>
<td>LS (F)</td>
<td>M-O</td>
</tr>
<tr>
<td>Wilson and Stratton (1991)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>ASL/C-ML</td>
<td>LS (F)</td>
<td>M-O/CML</td>
</tr>
<tr>
<td>Ihssen and Weil (1992, 1994)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ASL</td>
<td>Analytic</td>
<td>M-O</td>
</tr>
<tr>
<td>Wed and Hense (1992)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>C-ML</td>
<td>LS (F)</td>
<td>CML</td>
</tr>
<tr>
<td>Haukefeld (1994)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>C-ABL</td>
<td>LES + LS (F)</td>
<td>None</td>
</tr>
<tr>
<td>Lueckei and Rus (1994)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>ASL</td>
<td>LS (F)</td>
<td>31 closure Multi source</td>
</tr>
<tr>
<td>Schmid (1994)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ASL</td>
<td>Analytic, DA</td>
<td>M-O</td>
</tr>
<tr>
<td>Flech et al. (1996)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>N-ASL</td>
<td>LS (B)</td>
<td>M-O</td>
</tr>
<tr>
<td>Haukefeld et al. (1997)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>C-ABL</td>
<td>LES</td>
<td>None</td>
</tr>
<tr>
<td>Stamm (1997)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ASL</td>
<td>Analytic</td>
<td>M-O</td>
</tr>
<tr>
<td>Balswick (1997)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>FCL + N-ASL</td>
<td>LS (F)</td>
<td>Empir. + M-O Forest</td>
</tr>
<tr>
<td>Sue and Leclerc (1998)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>FCL + N-ASL</td>
<td>LES</td>
<td>none</td>
</tr>
<tr>
<td>Haukefeld et al. (1999)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ASL</td>
<td>Analytic</td>
<td>M-O</td>
</tr>
<tr>
<td>Haukefeld et al. (1999)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ASL</td>
<td>Analytic</td>
<td>M-O</td>
</tr>
<tr>
<td>Illech et al. (2000)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ABL</td>
<td>LS (F)</td>
<td>M-O</td>
</tr>
<tr>
<td>Kerlik et al. (2001)</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>FCL + RSL + ASL</td>
<td>LS (F)</td>
<td>Empir. + M-O Forest</td>
</tr>
<tr>
<td>Komarm and Meier (2001)</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>ASL</td>
<td>Analytic</td>
<td>Power/M-O</td>
</tr>
<tr>
<td>Kim et al. (2002)</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>ASL + C-ML</td>
<td>LS (B)</td>
<td>M-O + CML</td>
</tr>
</tbody>
</table>

1. This reflects the potential of the model to include horizontal or vertical inhomogeneity in the flow and turbulence field.
3. ASL: atmospheric surface layer; ABL: atmospheric boundary layer; ML: mixed layer; FCL: forest canopy layer; RSL: roughness sublayer; N: neutral; US: unstable; C: convective.
4. LS: Lagrangian stochastic; F: forward; B: backward; LES: large-eddy simulation; SA: source area.
5. Assumed profile shapes for mean velocity and diffusivity or turbulence statistics.
6. Conc.: for concentration only; β: Bowen ratio; reg.: regression.
in its surface coverage and has flat terrain. Over such a surface, any horizontal gradients disappear, the surface-atmosphere exchange is only relevant in the vertical, and the vertical direction coincides with the direction that is normal to the terrain and normal to the mean flow. This is the ideal situation where M–O similarity theory applies, and vertical fluxes are considered invariant with height over a range of approximately \(z_e \geq z_0 \geq 0.1 \delta \) (where \(z_e \) is the height of the roughness sublayer, see, e.g., Raupach et al. (1991), and \(z_0 \) is the depth of the daytime mixed layer). Within this height range, flux measurements are insensitive to the horizontal or vertical placement of the sensor. Eq. (32) reduces to just two terms on the right-hand side (RHS): storage change and vertical turbulent flux through the lid of the box. Over tall vegetation, storage change is often non-negligible at hourly time-scales or less, but can relatively easily be assessed by the time increments of vertical profile measurements (e.g., Goulden et al., 1996. Schmid et al., 2000). In steady state and horizontally homogeneous conditions, the storage change term disappears as well and the interfacial biosphere-atmosphere exchange is given directly by the turbulent flux aloft

\[
\text{NEE}_C = \frac{F(x,y)}{A}
\]

However, over naturally vegetated surfaces, variability and inhomogeneity are the rule. Most long-term flux measurements are done in locations with varying degrees of topography and variations in vegetation or land-use over horizontal scales of 10^3 m or less. The fact that (33) is thus clearly not valid in most practical situations underlines the need to consider (32), or even (31) as the basis for assessing biosphere-atmosphere exchange (Baldocchi et al., 2000).

Typically, flux measurements are conducted on a single tower so that the spatial integration required in (32) is not technically feasible. However, micrometeorological flux sensors respond to an aggregate of surface conditions contained in their flux footprint (Schuepp et al., 1990). The dimensions and orientation of the flux footprint depend on the location and height of the sensor, and vary in time with stability and wind direction. In essence, over the averaging time of a flux calculation, the flux is determined by the covariance of concentration and vertical velocity in the sequence of turbulent eddies that are advected past it, and the footprint describes the region of the surface that affects the concentrations and velocities of these eddies. Thus, to accept a time-averaged flux as a valid estimate of biosphere-atmosphere exchange over an area of \(A = (4 \pi \delta y) \), we implicitly rely on the following ergodic hypothesis:

\[
\frac{1}{A} \int_{-\delta y}^{\delta y} \int_{-\delta z}^{\delta z} \int_{-\delta x}^{\delta x} \phi(x, y, z, t) \, dx \, dy \, dz = \frac{1}{2\tau} \int_{-\tau}^{\tau} \phi(x, y, z, t) \, dt
\]

where \(2\tau \) is the averaging time of the flux measurement. The spatial and temporal averaging filter operators, \(f^A \) and \(f^T \) are defined by (34). In the formulation of (32) and (34), the spatial filter is a box-car, with a uniform weight (1/A) over the entire domain, as is appropriate for modeling of biosphere-atmosphere exchange. However, as shown by Horst and Weil (1992) and Schmid (1994), the sensor footprint is a smooth weight-distribution function of a spatial filter that approaches zero asymptotically on all sides, \(f_k(x, y, z, \delta, \xi, \eta) \), where \(\delta, \xi, \eta \) are dummy variables for a given combination of \(x, y, z \), to anticipate that the filter function itself may be spatially inhomogeneous. We thus need the additional assumption that

\[
\frac{1}{A} \int_{-\delta y}^{\delta y} \int_{-\delta z}^{\delta z} \int_{-\delta x}^{\delta x} f_k(x, y, z, \delta, \xi, \eta) \phi(x, y, z, t) \, dx \, dy \, dz = \frac{1}{2\tau} \int_{-\tau}^{\tau} \phi(x, y, z, t) \, dt
\]

or, formulated as a probabilistic representativeness criterion, and using the angular brackets \(\langle \rangle \) as the spatial averaging operator,

\[
\Pr \left\{ \left(\int f_k(x, y, z, t) \phi(x, y, z, t) \, dx \, dy \, dz \right)^2 - \langle \phi(x, y, z, t)^2 \rangle^2 \leq \epsilon^2 \right\} = \eta
\]

where \(\eta \) is the probability (Pr) that the footprint average of \(f \) differs from the control area average by no more than a fraction \(\epsilon \). In (36), the footprint filter function retains an index ‘\(k \)’ to allow for a dependence of \(f_k \) on the quantity ‘\(\phi \)’ that is being averaged. Obviously, the validity of any measured flux...
or concentration as reflecting biosphere–atmosphere exchange in the framework of (32) hinges critically on the criterion in (36). This argument leads to one of the central requirements of biosphere–atmosphere exchange measurements over inhomogeneous areas: the weighted average biosphere–atmosphere exchange contained in the sensor footprint for any measured quantity, \(\phi \), in (32), must be representative of the source/sink activity contained in the box, \(V \), of (32). In this sense, (36) is a spatial representativeness argument that is equivalent to the notion of footprint representativeness developed in Schmid (1997). Methods to assess (36) quantitatively are given in Schmid (1997) and Schmid and Lloyd (1999) .

Following Mahrt (1987), the footprint-weighted spatial averaging of exchange processes over inhomogeneous areas leads to additional dispersive terms, arising from correlations between deviations from the spatial average. Thus, the total vertical exchange of \(C \) in a block time-averaging scheme becomes

\[
\langle \bar{w}^T \rangle = \langle \bar{w}^T \bar{C} \rangle + \langle \bar{w}^T \bar{C}^* \rangle + \langle \bar{w} \bar{C}^* \rangle + \langle \bar{w}^* \bar{C}^* \rangle + \langle \bar{w} \bar{C}^* \rangle + \langle \bar{w} \bar{C}^* \rangle + \langle w \bar{C}^* \rangle + \langle w \bar{C}^* \rangle
\]

where \((\cdot)^* \) denotes a local deviation from the spatial average. In (37), the LHS is the total vertical \(C \)-exchange. The first term represents the mean advection by the spatially averaged vertical velocity. The second term is the dispersive flux due to the spatial correlation of the local time averages. The third term is the footprint-averaged turbulent flux, and the last two terms are Leonard terms (Leonard, 1974) that do not generally vanish if the mean w-field and the mean C-field are inhomogeneous (similar cross-terms with single deviations in time vanish in the block time-average here). Assuming that the Leonard terms are small compared to the dispersive flux, (34), (36), and (37) can be combined with (32) to give

\[
\text{NEE}_C = \int_{z_0}^{z_0 + h} \left[\frac{\partial \langle \bar{w} \bar{C} \rangle}{\partial z} + \frac{\partial \langle \bar{w} \bar{C}^* \rangle}{\partial z} + \langle \bar{w} \bar{C}^* \rangle + \langle \bar{w} \bar{C}^* \rangle \right] \text{d}z + (F_C(z_0))
\]

where \(d \) is the zero plane displacement length, \(u_* \) the friction velocity, \(\bar{U} \) the layer-averaged scalar wind magnitude up to height \(z_D \) and \(\Phi \) is the integrated stability correction function. Thus, the wakes of individual trees in typical forests persist up to about twice the canopy height, which corresponds to common estimates of the roughness sublayer height (Raupach et al., 1991). For a given reference height, the averaging length scale of a flux footprint is usually greater than the perturbation length scale of the dispersive flux \((\lambda) \) indicated by (39) or (40) (Mahrt, 1996). Thus, if the flux footprint satisfies the representativeness criterion (36), it may be concluded that
the footprint average also covers a sufficient average of
the dispersive flux to be spatially representative and
satisfy (36) for the dispersive terms in (38).

The second and third terms on the RHS of (38)
are the mean advective transport divergence, averaged
over the horizontal domain. The relationship between
these terms and carbon exchange measurements from
a single tower are discussed in Lee (1998), Finnigan
(1999), Baldocchi et al. (2000), and Paw U et al.
(2000). Lee (1998) showed that vertical advection can
be approximated by

$$\int_{z_m}^{\infty} (\bar{\nu}_m \partial \bar{C}/\partial z \bar{\nu}_m)(\bar{C}(z_m)) - \bar{C} \, dz$$

(41)

where $\bar{\nu}_m$ is the mean vertical velocity at the sensor
height, z_m, and \bar{C} is the volume averaged concentra-
tion. Lee (1998) compared several mechanisms that
can give rise to a non-zero $\bar{\nu}_m$. Of these, only kata-
batic and anabatic circulations associated with terrain,
and a potential systematic bias in daytime convection
patterns over vegetation with low Bowen ratios appear
to be strong enough to cause a significant vertical
drift. These types of motion have horizontal scales on
the order of 1–10 km or more and thus the vertical
velocity is not expected to vary considerably over our
reference spatial domain defined by the flux footprint
in (38). Clearly, this type of inhomogeneity of the
mean flow and its effect on biosphere–atmosphere
exchange cannot be accounted for by a large enough
footprint. However, Lee (1998) and Paw U et al. (2000)
described methods to determine $\bar{\nu}_m$ experimentally
and suggest procedures to account for the vertical
advection term in the mass continuity equation.

The experimental determination of the concentra-
tion part on the RHS of (41) is closely associated
with the measurement of the storage change term in
(38) and is usually determined from C-profile mea-
urements between the forest floor and the reference
height, z_m. As shown in Schmid (1994), the scalar
concentration footprint is larger than the flux footprint
in the same conditions, and thus the spatial averaging
domain for $\bar{C}(z_m)$ is larger than for $\bar{F}(z_m)$. Thus,
if the footprint averaged flux, $\bar{F}(z_m)$, is deemed
spatially representative of the forest and is satisfying
(36), so is the footprint averaged concentration at
the same height, unless the concentration footprint is
so large that mesoscale landscape heterogeneity becomes
important. However, both the volume average of C in
(41) and the storage change term in (38) (first term on
the RHS) involve concentration measurements from
the reference height z_m, all the way to the ground. If z_m
refers to a measurement height above a forest canopy,
and the lowest level of a measured C-profile is just a
fraction of a meter above the forest floor, the footprint
sizes along the profile are expected to vary by several
orders of magnitude (note that, since the temporal de-
velopment of the concentrations are considered here,
and not a flux–gradient relationship, it is the concen-
tration footprint and not the profile-flux footprint of
Horst (1999) that comes to play here). If a footprint
isopleth at any height is approximated by an ellipse,
whose dimensions grow with height, the relevant av-
eraging volume for the storage term in (38) resembles
an inverted elliptical cone: the spatial reference at its
base is considerably smaller than at the top. Two kinds
of errors or biases can result from this. First, towers
for above-canopy flux measurements are often located
in gaps or small clearings of the canopy, to allow ac-
cess to the tower and limit interference between trees
and the tower or guy-wires. If C-profile measurements
are conducted along such a tower, it must be expected
that the lower portion of C-storage is affected by the
emission, ventilation and mixing perturbations in the
immediate vicinity of the tower. Second, in practice,
the temporal integration of the storage term is com-
monly considered as the bulk increment between two
discrete averaging periods on the order of 1/2–1 h.
Non-stationarity at this time scale (e.g., a shift in flow
direction, or change in stability) can cause the foot-
prints of the two concentration measurements to be
disparate. In this case, the bulk integration reflects
the folding of spatial variability into a measured apparent
temporal trend of storage change.

In summary, flux footprint estimates establish the
spatial context of spatially measured turbulent fluxes with
reference to biosphere–atmosphere exchange. How-
ever, the spatial context of other measurable terms in
the three-dimensional mass conservation equation is
largely independent of the flux footprint and is likely
to be disparate from it, rendering the spatial aver-
aging operators for each term in (38) incongruous.
The spatial consistency in estimates of NEE by the
mass conservation equation can be evaluated by rep-
resentativeness criteria, such as (36), for each term in
the equation. Footprint considerations are inherently
incapable of directly addressing contributions to the
mass budget due to spatial variations in the flow and
turbulence fields (i.e., the advection and dispersive
flux terms in (38)). Methods to evaluate and correct
for such effects are discussed in Lee (1998), Finnigan
(1999), Baldocchi et al. (2000) and Paw U et al.
(2000), among others.

4. Future directions of footprint
modeling applications

The dramatic increase of publications that address
footprint modeling, applications or related issues of
fetch and spatial representativeness for flux measure-
ments in recent years demonstrates the growing need
for practical footprint models. The development of
a growing number of long-term trace gas exchange
studies over complex forest canopies and in often to-
pographically challenged terrain (such as those partic-
ipating in the FLUXNET program) underlines the fact
that the requirements for future footprint models are
divergent: on the one hand, practical footprint models
must be easy to use, if ever possible in the field, where
the availability of computer resources (and time) is
limited. The recent developments in analytical foot-
print models (Section 2.5) satisfy this need, but these
models are limited to homogeneous surface layer sim-
ilarity conditions. On the other hand, footprint models
should produce realistic results in real-world situa-
tions for measurements over (or below) tall canopies,
spatially heterogeneous turbulence, stability condi-
tions from extremely stable to free-convective, and
instationarity. Here, the backward Lagrangian mod-
els (Section 2.7) and the LES-based footprint studies
(Section 2.8) provide first steps and hold promise of
future progress, albeit at potentially extreme computa-
tional and resource expense. It seems that any one
objective cannot be pursued without abandoning the
other.

A form of compromise was suggested by Hsieh et al.
model is run over a range of input conditions, and the
results are organized in non-dimensional groups and
related to the input variables by regression analysis.
In this way, a hybrid model is created in the form of
an approximate or parameterized version of the full
model. The advantages of such an approach are evi-
dent: the hybrid model can be expressed by a set of
explicit algebraic equations, while some of the com-
plicity and skill of the full model is retained through
the regression. However, the pitfall of any approxima-
tion or parameterization is that its validity is strictly
limited to the range of conditions over which it was
developed.

With a view to the divergent demands on future foot-
print models, and from the perspective of the current
state-of-the-art, a number of problems and desirable
research directions for footprint modeling emerge:

• There is a general need for footprint model valida-
tion. Data for such validations could be provided
by tracer release experiments where both concen-
trations and scalar fluxes are measured. A small
number of suitable tracer experiments exist for
dispersion in a homogeneous surface layer over
short vegetation. No validation data are currently
available for forest canopy footprint models. An
alternative to tracer releases that can provide some
insight is the further development of LES applica-
tions towards the simulation of realistic scenarios.

• Footprint models that are applicable to tall vegeta-
tion need to become more realistic. This objective
requires a better understanding of the turbulence
structure in forest canopies. LS models adapted to
forest canopies are dependent on ad hoc assump-
tions about the profiles of turbulence statistics, and
on local isotropy of small-scale turbulence, which
are not strictly warranted. Important issues that
hamper progress along these lines include experi-
mental difficulties, spatial heterogeneity, clumpsi-
ness of the vegetation, and instationarity of canopy
layer turbulence.

• The problem of horizontal inhomogeneity in the
flow field needs to be addressed. Both backward
Lagrangian models and LES-based footprint eval-
uations can cope with horizontal inhomogeneity in
principle, but this needs to be demonstrated in
practice. Forward Lagrangian models can handle
horizontally inhomogeneous flow only at great
computational expense. One challenge here is that
the range of heterogeneous geometries is infinite.
Generalizations tend to be either impossible or
trivial.

• Forest edges or gaps are common within the “ex-
pected footprint” of many tower-based flux mea-
surements. Their effect on the footprint is largely
unknown. Again, LES applications can provide guidance in principle, but the computational expense, and lack of turbulence data for validation are immense obstacles. The applicability of backward LS models in this context needs to be explored, but the lack of turbulence information is bound to remain a limiting factor.

- The influence of topography on flux footprints has been largely ignored to date. With many FLUXNET sites situated in topographically exposed or steep terrain, this issue is rapidly moving to the center.

This list of footprint modeling issues is by no means meant to be exhaustive. Most of the problems and challenges are interrelated and all of them are at the center of inquiry in the “new” micrometeorology of the real-world.

Acknowledgements

The author is indebted to Tom Horst, Natascha Kljun, Mathias Rotach, Hong-Bing Su, and John Wilson for many valuable comments and suggestions on the manuscript of this paper. The work of my graduate student Gabriella Villani, about the sensitivity of footprint predictions to discontinuities in the turbulence profiles, will be presented in a forthcoming paper. This work was supported by the National Institute of Global Environmental Change through the US Department of Energy (US-DOE Cooperative Agreement No. DE-FC03-90ER61010) and by a grant from the Terrestrial Carbon Processes program of US-DOE (through a subcontract from Harvard University). All opinions, findings, conclusions, and recommendations are those of the author and do not necessarily reflect the views of US-DOE.

References

measurements over a heterogeneous forest. Boundary-Lay. Meteorol. 97, 137–166.