Sustainable Mobility
An Automaker Perspective on Environmental & Energy Policy

Sue Cischke
Group Vice President
Sustainability, Environment and Safety Engineering
Ford Motor Company

“The Search for Wise Energy Policy”
School of Public and Environmental Affairs – Indiana University
Washington D.C. – June 11, 2009
Contributions to CO₂ Emissions is Across Global Regions and Industry Sectors

- On-road cars (32%) and light-duty trucks (29%), as a portion of the transportation sector (33%), contribute about 20% of US and ~11% of global CO₂ emissions

- Vehicles are significant source of GHGs but are often perceived to be the major source
Ford’s CO₂ Footprint is Predominantly Vehicle Emissions

CO₂ in million metric tonnes (MMT) – 2005 data

Total CO₂ Emissions
415 million metric tonnes
U.S. Fleet Fuel Consumption: Influenced by Vehicle Population & Mix

- 68 Million vehicles in the 1960s
- 241 Million vehicles in the 2000s
- 16% of vehicles were trucks in the 1960s
- 46% of vehicles were trucks in the 2000s
U.S. Fleet Fuel Consumption: Influenced by Vehicle Miles Traveled

- Gasoline Consumed (Bils. Gallons): 719 Billion
- Total Miles Traveled: 2.9 Trillion
- Percentage:
 - 13%
 - 38%
 - 66%
Auto Industry Progress to Date: Fuel Economy has Increased

- Fuel economy rates in cars increased more than 100 percent since 1974.
- Fuel economy rates in trucks (minivans, vans, SUVs, and pickups) increased 53 percent since 1975.
- Today’s average light truck gets better mileage than an average 1970s compact car.
- Today’s average SUV gets at least 33 percent better mileage than the average car in 1975.
Well-to-Wheels CO2 is Determined by Fuel, Propulsion System and Source of Power Generation

WTW Fossil CO2 g/km for 2010 compact-size vehicle
Addressing climate change and energy security issues will require the involvement of all stakeholders.
Addressing climate change and energy security issues will require the involvement of all stakeholders.
Science – Stabilizing Atmospheric CO₂ Levels

Atmospheric Concentration (ppm)

Year

650 ppm: 2.3 - 3.7 °C
550 ppm: 2.0 - 3.4 °C
450 ppm: 1.7 - 2.8 °C

Reduced Risk of Environmental Impact

Accepted Range To Minimize Environmental Impact
Ford’s Sustainability Framework for CO₂ and Technology Migration Development

Inputs:
- Targeted CO₂ Atmospheric Glide path
- Auto Industry: Vehicle fleet CO₂ requirements
- Energy Industry: Low-fossil-carbon fuels glide path

Outputs:
- Vehicle / Technology Migration Plan
- Vehicle / Fuel Strategic Alignment
- Well-to-tank Plan: Reduce fossil CO₂ contribution from fuel sources

Key Models and Strategies:
- CO₂ Reduction Model
- Fuel Development Cost Minimization Strategy
- Technology Optimization Model
- Vehicle / Technology Migration Plan
- Vehicle / Fuel Strategic Alignment
- Well-to-tank Plan: Reduce fossil CO₂ contribution from fuel sources
CO₂ Model to Estimate the Emissions Reduction Requirement of the Light-Duty Vehicle Fleet

Inputs
- Sales volume
- Vehicle miles driven
- Vehicle fuel consumption
- Vehicle retirements
- Fuel CO₂ information
- Emission reduction per stabilization trajectory

CO₂ Reduction Model
- Proportionally applies emissions reduction to all sectors and regions
- Factors in things that impact year-over-year emissions output (old / new vehicle mix, bio fuel availability)

Outputs
- “New fleet” targets that are required to move the “overall fleet” glide path in line with the required emissions reduction trajectory

![Graph showing emissions reduction over time from 2000 to 2050](image)
Sustainability Strategy – Technology Migration

Near Term
Begin migration to advanced technology

- Significant number of vehicles with EcoBoost engines
- Electric power steering 70 – 80%
- Dual clutch and 6 speed transmissions replacing 4 and 5 speeds
- Four Hybrid applications
- Increased unibody applications
- Introduction of additional small vehicles
- Battery management systems 75%
- Aero improvement up to 5%

Mid Term
Full implementation of known technology

- EcoBoost engines available in nearly all vehicles
- Electric power steering 100%
- Six speed transmissions 100%
- Weight reduction of 250 – 750 lbs
- Engine displacement reduction aligned with weight save
- Additional Aero improvements up to 5%
- Increased use of Hybrids
- Introduction of PHEV and BEV
- Diesel use as market demands

Long Term
Continue leverage of Hybrid technologies and deployment of alternative energy sources

- Percentage of internal combustion dependent on renewable fuels
- Volume expansion of Hybrid technologies
- Continued leverage of PHEV, BEV
- Introduction of fuel cell vehicles
- Clean electric / hydrogen fuels
Sustainability Strategy – Technology Migration

Near Term
- Begin migration to advanced technology

Mid Term
- Full implementation of known technology

Long Term
- Continue leverage of Hybrid technologies and deployment of alternative energy sources

EcoBoost
- Significant number of vehicles with EcoBoost engines
- Electric power steering 70–80%
- Dual clutch and 6 speed transmissions replacing 4 and 5 speeds
- Four Hybrid applications
- Increased unibody applications
- Introduction of additional small vehicles
- Battery management systems 75%
- Aero improvement up to 5%

Mid Term
- EcoBoost engines available in nearly all vehicles
- Electric power steering 100%
- Six speed transmissions 100%
- Weight reduction of 250 – 750 lbs
- Engine displacement reduction aligned with weight save
- Additional Aero improvements up to 5%
- Increased use of Hybrids
- Introduction of PHEV and BEV
- Diesel use as market demands

Long Term
- Percentage of internal combustion dependent on renewable fuels
- Volume expansion of Hybrid technologies
- Continued leverage of PHEV, BEV
- Introduction of fuel cell vehicles
- Clean electric / hydrogen fuels
Introduction of EcoBoost Technology

- Gasoline Direct Injection
- Turbocharging
- "Downsizing & Boosting"
EcoBoost Torque Comparison

EcoBoost V-6 vs. Comparable V-8

Engine Torque Comparison

Engine Speed (rpm)

Engine Torque (lbf·ft)

3.5L V-6 Gasoline Turbo-Charged Direct Injection

4.6L V-8
Affordability of New Technologies is Critical

Payback of Incremental Cost (w/o incentives) Through Fuel Savings

- EcoBoost: 2.7 years
- I-4 Diesel: 6.9 years
- I-4 Hybrid: 12.6 years
- I-4 CNG: 7.1 years
- I-4 PHEV: 14.5 years
- BEV: 29.2 years

Assumptions:
15,000 miles / year
Gas: $2.62 / gallon
Diesel: $2.50 / gallon
Sustainability Strategy – Technology Migration

Near Term
Begin migration to advanced technology

Mid Term
Full implementation of known technology

Long Term
Continue leverage of Hybrid technologies and deployment of alternative energy sources

Near Term
• Significant number of vehicles with EcoBoost engines
• Electric power steering: 70–80%
• Dual clutch and 6-speed transmissions replacing 4 and 5-speeds
• Four Hybrid applications
• Increased unibody applications
• Introduction of additional small vehicles
• Battery management systems: 75%
• Aero improvement up to 5%

Mid Term
• EcoBoost engines available in nearly all vehicles
• Electric power steering: 100%
• 6-speed transmissions: 100%
• Significant weight reduction of 250 – 750 lbs
• Engine displacement reduction aligned with weight save
• Additional Aero improvements up to 5%
• Increased use of Hybrids
• Introduction of PHEV and BEV

Long Term
• Percentage of internal combustion dependent on renewable fuels
• Volume expansion of Hybrid technologies
• Continued leverage of PHEV, BEV
• Introduction of fuel cell vehicles
• Clean electric / hydrogen fuels
Fuel Economy Leadership on The Road Today
Sustainability Strategy – Technology Migration

Near Term
Begin migration to advanced technology

- Significant number of vehicles with EcoBoost engines
- Electric power steering 70 – 80%
- Dual clutch and 6 speed transmissions replacing 4 and 5 speeds
- Four Hybrid applications
- Increased unibody applications
- Introduction of additional small vehicles
- Battery management systems 75%
- Aero improvement up to 5%

Mid Term
Full implementation of known technology

- Electrification Strategy
 - Additional Aero improvements up to 5%
 - Increased use of Hybrids
 - Introduction of PHEV and BEV
 - Diesel use as market demands aligned with weight save

Long Term
Continue leverage of Hybrid technologies and deployment of alternative energy sources

- Percentage of internal combustion dependent on renewable fuels
- Volume expansion of Hybrid technologies
- Continued leverage of PHEV, BEV
- Introduction of fuel cell vehicles
- Clean electric / hydrogen fuels

2007
2011
2020
2030
Electrification Strategy – Family of Electrified Vehicles

Electric Powered Vehicles by 2012 Include:

- Full Battery Electric Transit Connect Commercial Van in 2010
- Full Battery Electric Focus in 2011
- All New Hybrid Vehicles Including Plug-In Version in 2012
Leveraging Global Platforms

Plug & Play into High Volume Platforms with Global Reach
Ford / Southern California Edison
Plug-In HEV Partnership

- Unique partnership between automotive and utility sectors
- 20-40 miles daily use
- Off-peak charge provides low-cost opportunity
- Success depends on affordable model – value to customers, manufacturers and utilities
- Diversifies transportation energy supply
Ford, DOE, EPRI and Utility Partners
Sustainability Strategy – Technology Migration

Near Term
Begin migration to advanced technology

- Significant number of vehicles with EcoBoost engines
- Electric power steering 70 – 80%
- Dual clutch and 6 speed transmissions replacing 4 and 5 speeds
- Four Hybrid applications
- Increased unibody applications
- Introduction of additional small vehicles
- Battery management systems 75%
- Aero improvement up to 5%

Mid Term
Full implementation of known technology

- Lightweight Materials
 - Aligned with weight save
 - Additional Aero improvements up to 5%
 - Increased use of Hybrids
 - Introduction of PHEV and BEV
- Diesel use as market demands

Long Term
Continue leverage of Hybrid technologies and deployment of alternative energy sources

- Percentage of internal combustion dependent on renewable fuels
- Volume expansion of Hybrid technologies
- Continued leverage of PHEV, BEV
- Introduction of fuel cell vehicles
- Clean electric / hydrogen fuels

2007
2011
2020
2030
Addressing climate change and energy security issues will require the involvement of all stakeholders.
Technology Migration for Fuels

Near Term
Begin migration to advanced technology

- 1st generation biofuels ramp up to capacity
- Growth of fossil fuel peaks as advanced vehicle technology migrates into the in-use fleet

Mid Term
Full implementation of known technology

- 2nd generation biofuels become viable
- Total renewable fuel capacity is expanded
- Fleet programs confirm readiness of plug-in HEV and hydrogen vehicles

Long Term
Volume roll-out of stretch technologies and alternative energy sources

- Renewable fuels are the primary content as fossil fuels ramp down
- Clean alternative fuels (electricity and hydrogen) enable volume applications of plug-in HEVs, H2ICEs, and eventually FCVs
Sustainable Supply of Biofuels

1st Generation Biofuels

2nd Generation Biofuels
Energy Independence Drives Different Regional/Local Choices

Regional energy sources (present reserves) will shape policy/response to increased oil prices, climate change and energy security. While sources of petroleum are limited, sources for electricity exist in all regions.

* %'s are of total global reserves

* Note data on Africa not available
Addressing climate change and energy security issues will require the involvement of all stakeholders.
Passenger car sales made up more than 60% of the light-duty vehicle market in May 2008 – a 20% shift since August 2005.

Percentage Passenger Car Sales (May 2008) – 61.1%

Percentage Truck Sales (May 2008) – 38.9%

Shift to Car 20.4%

Percentage Passenger Car Sales (August 2005) – 40.7%
Fuel Prices Matter...When Prices Drop, So Do Sales of HEVs
Historically low fuel prices reinforced consumer behavior

- Consumers drive more when fuel prices are low
- Consumers drive less when fuel prices are high
Eco Driving Training:

- Documented Fuel Consumption Savings of 25%
- Addresses Entire Vehicle Population
- Not Just Tips – Include in Drivers Education Programs, Driver License Renewal and Training Events
- Safety Benefits as Well

Modest Eco Driving Program that Results in a 10% Improvement in Fuel Consumption

<table>
<thead>
<tr>
<th>Gasoline Savings</th>
<th>CO₂ Reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.6 Billion Gallons</td>
<td>120.6 Million Metric Tons</td>
</tr>
</tbody>
</table>
Addressing climate change and energy security issues will require the involvement of all stakeholders.
“One National Standard”

Combined Car/Truck CAFE

Historical Federal Car/Truck CAFE

Federal CAFE Legislation
(30.2 mpg in 2015MY; 35 mpg in 2020-4%)

Potential “One National Standard”
(35.5 mpg in 2016)

Combined Car/Truck California AB1493

Model Year

Combined Car + Truck FE (mpg)
Climate Change / Energy Security
Policy Principles

- Should achieve the most economically efficient CO2 reductions possible – comprehensive economy-wide cap and trade policy framework.

- Transportation sector must be an integral component of a national program.

“We are committed to a pathway that will slow, stop and reverse the growth of U.S. emissions while expanding the U.S. economy.”
The Role of Stakeholders: An Integrated Approach

<table>
<thead>
<tr>
<th>Stakeholders</th>
<th>Actions</th>
</tr>
</thead>
</table>
| **Auto Industry** | ✓ Accelerate advanced technology vehicle deployment
 ✓ Continue to improve the efficiency of our products
 ✓ Educate consumers/provide “eco-driving” training |
| **Fuel Industry** | ✓ Invest in developing and marketing biofuels
 ✓ Increase R&D into advanced low carbon bio-fuels (including cellulosic ethanol) |
| **Government** | ✓ Policies to align consumer action with vehicles and fuels
 ✓ Incentives for advanced technology vehicles & E85 fueling infrastructure development
 ✓ Investment in improved road traffic management infrastructure
 ✓ Public awareness and education |
| **Consumers** | ✓ Drive vehicles in an energy-conscious fashion
 ✓ Vehicle choice and miles traveled ultimately determines how much fuel is consumed |
Why Ethanol Now?

Opportunity for Immediate Impact

- **Ford**: Over 2 million FFVs on America’s roads
- **U.S. Automakers**: More than 7 million E85 FFVs
- Over 4.2 billion gallons of gasoline could be displaced
 - Equal to gasoline consumption in New Jersey or North Carolina.
- Doubling our production by 2010 – half by 2012
Renewable Fuel Standard will Require Expansion of Cellulosic Biofuels

Non-advanced Renewable Fuel: Conventional Corn-starch Ethanol

Non-cellulosic Advanced: Sugar Ethanol Co-processed Renewable Diesel

Biomass-based Diesel: Biodiesel-ester Standalone Renewable Diesel

Advanced Cellulosic Biofuel

Billions of Gallons per Year

California’s 2012-14 Zero Emission Vehicle Requirements

12% Mandate

- **“Bronze”** 6% PZEV (30% volume)
- **“Silver”** 3% AT-PZEV HEV or CNG (4.6% volume)
- **“Gold”** 3% ZEV

- **“Silver +”** 0 – 2.21% Enhanced AT-PZEV Plug-in Hybrid or H2 ICE
 - 10,000 – 14,000 PHEVs / yr for all 12 ZEV states

- **“Gold”** 0.79% – 3% ZEV BEV or FCEV
 - ~ 600 BEVs / yr in any ZEV state

* Requirements increase in 2015MY and beyond. Rulemaking in 2010.*