Design Features of Climate Legislation

The Search for Wise Energy Policy
June 11, 2009
Washington DC

Kenneth Richards
School of Public and Environmental Affairs, Indiana University
Smith School of Enterprise and the Environment, University of Oxford
Discussion of Design Features

• Emissions Reduction Targets
• Point and Scope of Regulation
• Cost Containment Mechanisms
• Activities Outside the Cap
• Distribution of Allowances and Auction Revenues
• International Integration
Goal for Climate Change Legislation

To develop a feasible, cost-effective mechanism to reduce greenhouse gas emissions to a specified target level.
Policy Perspective

- Appropriate Targets
Policy Perspective

• Appropriate Targets
• Minimize Costs
Policy Perspective

- Appropriate Targets

- Minimize Costs
 - Cost-effective Abatement (AC)
Policy Perspective

• Appropriate Targets

• Minimize Costs
 – Cost-effective Abatement (AC)
 – Public Finance Impacts (PF)
Policy Perspective

• Appropriate Targets

• Minimize Costs
 – Cost-effective Abatement (AC)
 – Public Finance Impacts (PF)
 – Administrative/Implementation Costs (IC)
Policy Perspective

• Appropriate Targets

• Minimize Costs
 – Cost-effective Abatement (AC)
 – Public Finance Impacts (PF)
 – Administrative/Implementation Costs (IC)

• Constraints
 – Legal Feasibility
 – Political Feasibility
Policy Perspective

• Appropriate Targets

• Minimize Costs
 – Cost-effective Abatement (AC)
 – Public Finance Impacts (PF)
 – Administrative/Implementation Costs (IC)

• Constraints
 – Legal Feasibility
 – Political Feasibility

Minimize AC + PF + IC,
s.t., Environmental, Legal and Political Constraints
Discussion of Design Features

• Emissions Reduction Targets
• Point and Scope of Regulation
• Cost Containment Mechanisms
• Activities Outside the Cap
• Distribution of Allowances and Auction Revenues
• International Integration

When we address these design features we are really dealing with elements of our constrained cost-minimization framework and tradeoffs among those elements.
Mechanisms to control abatement costs

- Market-based system (cap-and-trade or taxes)
- Banking and borrowing
- Price cap/safety valve

Minimize $\text{AC} + \text{PF} + \text{IC}$,

s.t., Environmental, Legal and Political Constraints
Mechanisms to Control Abatement Costs

- Market-based system (cap-and-trade or taxes)
- Banking and borrowing
- Price cap/safety valve

Interactions
- Choice of cap and trade may help with political constraints

Minimize $AC + PF + IC,$

s.t., Environmental, Legal and **Political Constraints**
Mechanisms to control abatement costs

• Market-based system (cap-and-trade or taxes)
• Banking and borrowing
• Price cap/safety valve

Interactions
• Choice of cap and trade may help with political constraints
• When using a safety valve we are implicitly relaxing the environmental constraint should costs be higher than expected

Minimize $\text{AC} + \text{PF} + \text{IC}$,

s.t., \text{Environmental, Legal and Political Constraints}
Mechanisms to Reduce Implementation Costs

• Regulate upstream – natural gas distributors, petroleum refineries, coal mines – to minimize the number of covered entities

Minimize $AC + PF + IC$,

s.t., Environmental, Legal and Political Constraints
Mechanisms to Reduce Implementation Costs

- Regulate upstream – natural gas distributors, petroleum refineries, coal mines – to minimize the number of covered entities

Interaction

- Regulating upstream also broadens the coverage providing more opportunities for low-cost emissions reductions.

Minimize $AC + PF + IC$,
subject to, Environmental, Legal and Political Constraints
Further Mechanisms to Control Abatement Costs

- Offset systems to take advantage of low cost carbon sequestration and methane abatement opportunities.

Minimize $\text{AC} + \text{PF} + \text{IC}$,

s.t., Environmental, Legal and Political Constraints
Further Mechanisms to Control Abatement Costs

• Offset systems to take advantage of low cost carbon sequestration and methane abatement opportunities.

Interactions

• If offset system does not provide sufficient assurance of claimed reduction, the environmental target constraint is not met

Minimize $AC + PF + IC$,

s.t., Environmental, Legal and Political Constraints
Further Mechanisms to Control Abatement Costs

• Offset systems to take advantage of low cost carbon sequestration and methane abatement opportunities.

Interactions

• If offset system does not provide sufficient assurance of claimed reduction, the environmental target constraint is not met.

Recommendation: Evaluation methods that demonstrate “independent reproducibility” in estimates.

Minimize $\text{AC} + \text{PF} + \text{IC}$,

s.t., Environmental, Legal and Political Constraints
Mechanisms to Address Public Finance Impacts

- Auction allowances, recycle revenue to General Fund and reduce distortionary taxes

Minimize $AC + PF + IC$,

s.t., Environmental, Legal and Political Constraints
Mechanisms to Address Public Finance Impacts

• Auction allowances, recycle revenue to General Fund and reduce distortionary taxes

Interactions

• Control of the distribution of the allowances, whether through direct allocation or use of auction revenue, are a favorite tool for building political consensus

Minimize AC + PF + IC,

s.t., Environmental, Legal and Political Constraints
Mechanisms to Address Public Finance Impacts

- Auction allowances, recycle revenue to General Fund and reduce distortionary taxes

Interactions

- Control of the distribution of the allowances, whether through direct allocation or use of auction revenue, are a favorite tool for building political consensus

Recommendation: Recycle the revenues through state treasuries to reduce distortionary state taxes and address regional political interests.

Minimize $AC + PF + IC$, s.t., Environmental, Legal and Political Constraints
Mechanisms to Promote Political Feasibility

• Allocate allowances to electric utilities to reduce impacts on rate payers
• Provide additional electricity and natural gas rate relief measures for low income families
• Reserve portion of allowances for new entries to industries

Minimize $AC + PF + IC$,

s.t., Environmental, Legal and Political Constraints
Mechanisms to Promote Political Feasibility

- Allocate allowances to electric utilities to reduce impacts on rate payers
- Provide additional electricity and natural gas rate relief measures for low income families
- Reserve portion of allowances for new entries to industries

Interactions
- Allocating directly to utilities misses opportunity to displace distortionary taxes—plus problem of competitive vs. regulated utilities

Minimize \(AC + PF + IC \),

s.t., Environmental, Legal and Political Constraints
Mechanisms to Promote Political Feasibility

• Allocate allowances to electric utilities to reduce impacts on rate payers
• Provide additional electricity and natural gas rate relief measures for low income families
• Reserve portion of allowances for new entries to industries

Interactions
• Allocating directly to utilities misses opportunity to displace distortionary taxes—plus problem of competitive vs. regulated utilities
• Rate relief and allocations for new industry entrants dulls the price signal the lies at the heart of a market-based system

Minimize $\text{AC} + \text{PF} + \text{IC}$,

s.t., Environmental, Legal and Political Constraints
Mechanism to Protect the Environmental Target

- Avoid “leakage” by requiring imports from uncapped countries in energy intensive industry to submit allowances on embedded carbon.

Minimize AC + PF + IC,

s.t., Environmental, Legal and Political Constraints
Mechanism to Protect the Environmental Target

• Avoid “leakage” by requiring imports from uncapped countries in energy intensive industry to submit allowances on embedded carbon.

Interactions
• Has important implications for political support from energy-intensive domestic industry

Minimize AC + PF + IC,
 s.t., Environmental, Legal and Political Constraints
Mechanism to Protect the Environmental Target

- Avoid “leakage” by requiring imports from uncapped countries in energy intensive industry to submit allowances on embedded carbon.

Interactions
- Has important implications for political support from energy-intensive domestic industry
- Could involve substantial implementation costs to develop and enforce rules

Minimize $AC + PF + IC$, s.t., *Environmental*, *Legal* and *Political* Constraints
Mechanism to Protect the Environmental Target

- Avoid leakage by requiring imports from uncapped countries in energy intensive industry to pay a carbon tariff on embedded carbon.

Interactions
- Has important implications for political support from energy-intensive domestic industry
- Could involve substantial implementation costs to develop and enforce rules
- Could conflict with international trade agreements

Minimize $AC + PF + IC$

s.t., Environmental, Legal and Political Constraints
Take Home Lessons - General

- The design of climate legislation involves a web of interactions among cost elements – abatement costs, public finance impacts, and implementation costs – environmental goals and legal and political constraints.

- We should do our best to understand the implications – particularly recognizing when we are compromising one element in pursuit of another.
Take Home Lessons - Specifics

- Auction allowances – recycle revenue to reduce distortionary taxes, protect vulnerable households
- Recycle through state tax systems to address regional political concerns
- Avoid compromising the price signal that lies at the core of the program
- Require offset methods to be tested for independent reproducibility
- Apply controls upstream to reduce implementation costs
A Final Issue

Observation:
“The problem with political jokes is they get elected.”

Corollary:
The problem with policy jokes is they get adopted.
Effect of Delaying Climate Bill

Bill Page Length vs. Months after Bingaman-Specter

Manager’s Amendment

Bingaman-Specter

Lieberman-Warner
Effect of Delaying Climate Bill

- Bingaman-Specter
- Lieberman-Warner
- Manager’s Amendment
- October 2008
- March 2009

Bill Page Length

Months after Bingaman-Specter