Sickle cell refers to an allele that affects the β-chain of hemoglobin. The allele, S, confers resistance to malaria, but there is a pleiotropic effect of the allele when homozygous that causes severe anemia.

Actually, there are 3 alleles at the β locus: A - "normal", susceptible to malaria when AA, S - "sickle-cell", C - recessive, gives high resistance when homo.
Fitnesses of Genotypes Given Below

<table>
<thead>
<tr>
<th>Genotype</th>
<th>Fitness</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>0.9</td>
<td>Susceptible</td>
</tr>
<tr>
<td>As*</td>
<td>1.0*</td>
<td>Resistant</td>
</tr>
<tr>
<td>SS</td>
<td>0.2</td>
<td>Anemia</td>
</tr>
<tr>
<td>Ac</td>
<td>0.9</td>
<td>Susceptible</td>
</tr>
<tr>
<td>Sc</td>
<td>0.7</td>
<td>Anemia</td>
</tr>
<tr>
<td>CL*</td>
<td>1.3*</td>
<td>Highly Resistant</td>
</tr>
</tbody>
</table>

Note: Overdominance for fitness

Note: Highest fitness
When Bantu-speaking peoples of Africa expanded into West-Central Africa, malaria was not a problem. However, with their introduction of slash-and-burn agriculture they established a "new" environment ripe for malaria.

Initial (before slash-and-burn) allele freq.

- A, near unity
- S, very rare
- C, very rare

Let

- \(p = \text{freq of } A \)
- \(q = \text{freq of } S \)
- \(r = \text{freq of } C \)
Now, remember our old friend, $\Delta \theta$?

For two alleles we had

$$\Delta \theta = \theta' - \theta = 8 \frac{\sum p \omega_{12} + 8 \omega_{22}}{\bar{w}} - \bar{\theta}$$

Where $\bar{w} = p^2 w_{11} + pq w_{12} + q^2 w_{22}$

Expanding to 3 alleles gives

$$\Delta \theta = \theta' - \theta = 8 \frac{\sum p \omega_{AS} + 8 \omega_{SS} + r \omega_{SSS}}{\bar{w}} - \bar{\theta}$$
Simplifying from the previous page, we get

\[A_q = \frac{g}{\bar{w}} \left[p \text{WAS} + g \text{Wss} + r \text{Wsc} - \bar{w} \right] \]

WHERE \(\bar{w} = p^2 \text{WAA} + 2pg \text{WAS} + g^2 \text{Wss} \)
\[+ 2gr \text{Wsc} + r^2 \text{Wcc} + 2pr \text{Wac} \]

Now: let \(A_s = p \text{WAS} + g \text{Wss} + r \text{Wsc} - \bar{w} \)

And think of \(A_s \) as the **Ave Excess of the S Allele**

AND NOTE THAT \(A_s \) **GIVES THE DIFFERENCE**

IN FITNESS BETWEEN A GAMETE BEARING S

AND THE POPULATION MEAN
Given this definition of G_s, we get:

$$\Delta g = \frac{g}{\omega} G_s$$

Note that $\Delta g = 0$ when $G_s = 0$.

Also note that the direction of Δg (+ or -) depends only on the sign of G_s.

Similarly:

$$\Delta p = \frac{p}{\omega} Q_A$$

$$\Delta r = \frac{r}{\omega} Q_c$$

$$Q_c = p_w a + g \omega s + r \omega a c - \bar{w}$$

$$Q_A = p_w a + g \omega s + r \omega a c - \bar{w}$$
From prev.: $A_g = \frac{a_0}{w}$

$dr = \frac{r}{w} q_e$

For our initial gene freq. Before slash-and-burn
$p \approx 1; q \approx 0, r \approx 0$

we get

$\overline{w} = p^2 w_{AA} + 2pq w_{AS} + q^2 w_{SS}$

$\downarrow [0.9] + \downarrow 0 + \downarrow 0$

$+ 2qr w_{Sc} + r^2 w_{cc} + 2pr w_{Ac}$

$\downarrow 0 + \downarrow 0 + \downarrow 0$
\[
\begin{align*}
q_8 &= p_8w_{4s} + q_7w_{3s} + r_7w_{5c} - \bar{w} \\
&= \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
&= 1[1.0] + 0 + 0 - 0.9 \\
&= 0.1
\end{align*}
\]

Hence \(q_8 > 0 \), and the \(S \) allele should \(\uparrow \) when rare.
Consider now the c allele

$$\Delta r = \frac{r}{w} \Delta c$$

Under the same initial conditions \((p^{21}; g^{20}; r^{20})\)

$$\bar{w} = 0.9 \text{ (as shown prev page)}$$

$$\Delta c = p\Delta wc + g\Delta wc + r\Delta wc = \bar{w}$$

$$= [0.9] + 0 + 0 - 0.9$$

$$= 0.9 - 0.9 = 0$$

Hence: The response to malaria was

1) rapid increase in Δs
2) no change in c [even though the cc genotype is most fit!]
Thus dominance in the S allele and recessiveness in C plays a critical role!

At equilibrium ($\Delta p = \Delta q = \Delta r = 0$)

1) $p \approx 0.89$
2) $q \approx 0.11$
3) $G_S = (0.89)(1.0) + (0.11)(0.2) + (0.0)(0.7) - 0.91 = 0$
4) $G_C = (0.89)(1.0) + (0.11)(0.7) + (0.0)(1.3) - 0.91 = -0.03$

Hence C can't increase in the polymorphic population.
HENCE (and this is the take-home message)

The course and end point of selection requires knowledge of

1) starting conditions
and 2) dominance

Is this (ie 1 & 2 above) enough?
The inbreeding coefficient, \(f \), is the probability that the allele originated in the same ancestor, say grandma. The allele is then “identical by descent” (IBD).
Now suppose we allow slight inbreeding: $f = 0.05$.

Then for $p^2 = 1$, $q > 0$, $r > 0$

\[q_s = (1-f)pW_{As} + \left(f + (1-f)g \right) W_{ss} + (1-f)rW_{sc} - \overline{w} \]

\[= (0.95)(1)(1) + [0.05]0.2 + (0.95)(0)(0.7) - 0.9 \]

\[= 0.06 \]

Hence $\Delta q > 0$; s^r when rare

\[q_c = (1-f)pW_{Ac} + (1-f)gW_{sc} + \left[f + (1-f)r \right] W_{cc} - \overline{w} \]

\[= (0.95)(1.0)(0.9) + (0.95)(0)(0.7) + [0.05 + 0](1.3) - 0.9 \]

\[= 0.02 \]

Hence $\Delta r > 0$; c^r when rare
Thus in-breeding would allow for the C allele to increase, whereas out-breeding would not.

Hence: in addition to starting conditions and dominance relationships, we need to know breeding system to predict the course and endpoint of selection.

What is the endpoint for $f=0.05$?

As $c \uparrow a_s + q_A$ acquire negative values and the C allele is fixed at $r=1.0$
THIS GRAPH IS FOR BEFORE MALARIA. Note: here Was=Wac=1.0
After Malaria. $f = 0.0$. No inbreeding
After Malaria. $f = 0.05$
After Malaria. \(f = 0.10 \). Discussion: why does the fitness surface change?
see sickle cell simulation.

\[F = 0.05 \]