Education, unemployment and migration

Wolfgang Eggert
University of Paderborn and CESifo

Tim Krieger
University of Paderborn

Volker Meier
Ifo Institute for Economic Research,
University of Munich, and CESifo
1. Introduction

Topic: Interaction of education, migration and unemployment in interregional context

Questions:

- Consequences of free migration between regions for educational decisions, wage levels, and unemployment in sending and receiving region?
- How do regional and national economic shocks affect educational decisions and interregional migration?
- Can active labor market policies be rationalized?

Stylized facts:

- Persistent high interregional wage differentials
- Low-wage regions with high unemployment rates
- Higher formal qualification with reduced unemployment risk
- Propensity to migrate stronger for high-skilled than for low-skilled
Model:
- Unemployment according to efficiency wage argument
- Migration and education endogenous; distribution of costs of human capital acquisition and migration across individuals
- Exogenous technological gap between regions
- Presence of unemployment distorts decisions of individuals: incentives to acquire human capital and to migrate to rich region too strong, as measured by productivity differentials; but: only general equilibrium externalities
- Unemployment benefits reduce incentive for education and migration

=> education subsidy and mobility premium
2. The model

Two regions: high-wage region A, low-wage region B
Two skill groups: low-skilled (type L), high-skilled (type H)

w^k_i: wage of worker of type k in region i
$c \in [0, \bar{c}]$: cost of acquiring human capital
$d \in [0, \bar{d}]$: cost of migration to other region

c and d statistically independent
N_i: total initial number of individuals in region i

One-period framework

p^k_i: unemployment probability of individual of skill type k living in region i

$\theta_i := p^H_i$: unemployment rate of skilled workers
$\psi_i := p^L_i$: unemployment rate of unskilled workers

\bar{w}: uniform unemployment benefit
e: effort expected at workplace, same for skilled and unskilled
• Value of living in region j as individual of type k:

$$V_{j}^{k} = [(1 - p_{j}^{k}) \left(u(w_{j}^{k}) - e \right) + p_{j}^{k} u(w)]$$

(1)

• Individual of type k migrates from birth region i to other region j if and only if $V_{j}^{k} - V_{i}^{k} > d$

• Individual born in region i invests in education if and only if

$$\max \{ V_{i}^{H}, V_{j}^{H} - d \} - \max \{ V_{i}^{L}, V_{j}^{L} - d \} > c$$

(2)

U_{i}, S_{i}: total employment of low-skilled and high-skilled labor in region i

$G_{i}(S_{i}, U_{i}) = \beta_{i}G(S_{i}, U_{i})$: production function, with $\beta_{A} > \beta_{B} > 0$, decreasing returns to scale
• Shirking model:

q: probability that shirker is caught and fired immediately

b: exogenous separation rate

r: interest rate

No-shirking condition:

\[u(w) - e \geq u(\bar{w}) + re + \frac{be}{q} \]

(3)

• Input rule:

\[\frac{\partial G_i(S_i, U_i)}{\partial S_i} - w_i^H = 0 \]

(4)

\[\frac{\partial G_i(S_i, U_i)}{\partial U_i} - w_i^L = 0 \]

(5)
Fig. 1. Migration and education thresholds
Lemma 2:

(i) Share of individuals acquiring skills in region B smaller than in region A.

(ii) Of individuals born in region B, share of skilled workers among migrants to region A exceeds share of skilled workers remaining in region B.

(iii) Share of skilled workers among those staying in region B smaller than corresponding share among natives in region A.

(iv) In migration equilibrium: share of skilled workers in region A higher than corresponding share in region B.

- not obvious whether native population of high-wage region less or more skill-intensive than immigrants

- brain drain out of poor region at given education threshold, possible brain gain as education threshold tends to rise
3. Comparative statics

- Perfect substitutes: one unit of skilled labor = $\sigma > 1$ units of unskilled labor
- Impacts of population increase:

Proposition 1: Higher initial population in rich or poor region, N_A or N_B, induces (i) lower wages, (ii) higher skill-specific unemployment rates and (iii) smaller education thresholds in both regions.
• Impacts of region-specific technological shocks and skill-biased technological change:

Proposition 2: (i) *Rising productivity factor in rich or poor region, \(\beta_A \) or \(\beta_B \), increases wage rates and reduces group unemployment rates in both regions.*

(ii) *Rising productivity factor of skilled workers decreases wage and increases unemployment rate of low-skilled in both regions.*
4. Welfare analysis

- Simplified version: linear utility
- Social planner maximizes total output net costs of effort, education, and migration, st no-shirking constraints
- Migration of individual of type X from region B to region A efficient if

\[
(1 - p_A^{X}) u(w_A^{X}) - (1 - p_B^{X}) u(w_B^{X}) - d + \Gamma^X > 0
\]
with net general equilibrium externality

\[
\Gamma^X = \frac{\partial \theta_B}{\partial X_B} [\sigma u (w_B) - e] H_B + \frac{\partial \psi_B}{\partial X_B} [u(w_B) - e] L_B
\]

\[
- \frac{\partial \theta_A}{\partial X_A} [\sigma u (w_A) - e] H_A - \frac{\partial \psi_A}{\partial X_A} [u(w_A) - e] L_A
\]

aggregate labor supply in $B \downarrow \implies$ wages in $B \uparrow \implies$ group unemployment rates in $B \downarrow$; inverse impacts in A
* Social planner will qualify workers being born in region A for whom

\[(1 - \theta_A) u(w_H^A) - (1 - \psi_A) u(w_L^A) - c + \Gamma_A > 0\] (8)

* Worker born in region B should acquire human capital if

\[
\max \left\{ (1 - \theta_B) u(w_H^B) - (1 - \psi_B) u(w_L^B) - c + \Gamma_B, \\
(1 - \theta_A) u(w_H^A) - (1 - \psi_B) u(w_L^B) - c - d + \Gamma_B + \Gamma^H \right\} > 0 \] (9)

with

\[
\Gamma_j = - \left\{ \left[\frac{\partial \theta_j}{\partial H_j} - \frac{\partial \theta_j}{\partial L_j} \right] [\sigma u(w_j) - e] H_j \\
+ \left[\frac{\partial \psi_j}{\partial H_j} - \frac{\partial \psi_j}{\partial L_j} \right] [u(w_j) - e] L_j \right\} < 0 \] (10)

aggregate labor supply $\uparrow \iff$ wages $\downarrow \iff$ group unemployment rates \uparrow
• Unemployment benefit is source of distortion; number of workers who acquire skills and number of migrants too small

Proposition 3: Corrective region-specific education subsidy σ_j and type-specific migration subsidy ρ^i that achieve perfect internalization are

$$\sigma_j = (\psi_j - \theta_j) u(\bar{w}) + \Gamma_j$$

and

$$\rho^i = (p^i_B - p^i_A) u(\bar{w}) + \Gamma^i.$$

Level of subsidy is always smaller than full education or migration cost of marginal individual.

• Pareto improvement on allocation without subsidies cannot be achieved due to information rents
5. Conclusions

- Some brain drain out of poor region due to higher adjusted wage differentials for skilled
- Regional shocks distributed across all regions
- Overinvestment due to unemployment rate differentials without externalities, underinvestment due to unemployment benefits can be corrected by education and migration subsidies
- Alternative setup: identical cost of education, distribution on success probability
- Investment in physical capital and technological change absent