The Strategic Use of Ambiguity in Games

Frank Riedel Linda Sass

1Institute for Mathematical Economics
 Bielefeld University,
 ORFE, Princeton University

2Institute for Mathematical Economics
 Bielefeld University,
 Paris School of Economics

Indiana University, April 2012
Outline

1. Uncertainty vs. Risk
2. Strategic Uncertainty in Games
3. Ellsberg Games
4. An Example: Peace Negotiation
5. Two–Player Games
Uncertainty versus Risk

Motivation

- Knightian uncertainty versus (objective) risk
- Objective probability versus no probabilities, just uncertain outcomes
- Classical approach (de Finetti, Savage, Anscombe-Aumann): even under uncertainty, betting behavior allows to infer subjective probability measure P
- Large decision-theoretic literature on ambiguity aversion
- Many applications for single agent problems or large competitive economies
- Fewer investigations in strategic environments
Uncertainty versus Risk

Motivation

- Knightian uncertainty versus (objective) risk
- objective probability versus no probabilities, just uncertain outcomes
- classical approach (de Finetti, Savage, Anscombe-Aumann): even under uncertainty, betting behavior allows to infer subjective probability measure P
- large decision-theoretic literature on ambiguity aversion
- many applications for single agent problems or large competitive economies
- fewer investigations in strategic environments
Uncertainty versus Risk

Motivation

- Knightian uncertainty versus (objective) risk
- Objective probability versus no probabilities, just uncertain outcomes
- Classical approach (de Finetti, Savage, Anscombe-Aumann): even under uncertainty, betting behavior allows to infer *subjective* probability measure P
- Large decision-theoretic literature on ambiguity aversion
- Many applications for single agent problems or large competitive economies
- Fewer investigations in strategic environments
Uncertainty versus Risk

Motivation

- Knightian uncertainty versus (objective) risk
- Objective probability versus no probabilities, just uncertain outcomes
- Classical approach (de Finetti, Savage, Anscombe-Aumann): even under uncertainty, betting behavior allows to infer subjective probability measure P
- Large decision-theoretic literature on ambiguity aversion
- Many applications for single agent problems or large competitive economies
- Fewer investigations in strategic environments
Motivation

- Knightian uncertainty versus (objective) risk
- objective probability versus no probabilities, just uncertain outcomes
- classical approach (de Finetti, Savage, Anscombe-Aumann): even under uncertainty, betting behavior allows to infer subjective probability measure P
- large decision-theoretic literature on ambiguity aversion
- many applications for single agent problems or large competitive economies
- fewer investigations in strategic environments
Uncertainty versus Risk

Motivation

- Knightian uncertainty versus (objective) risk
- Objective probability versus no probabilities, just uncertain outcomes
- Classical approach (de Finetti, Savage, Anscombe-Aumann): even under uncertainty, betting behavior allows to infer subjective probability measure P
- Large decision-theoretic literature on ambiguity aversion
- Many applications for single agent problems or large competitive economies
- Fewer investigations in strategic environments
Uncertainty versus Risk

Motivation

- Knightian uncertainty versus (objective) risk
- Objective probability versus no probabilities, just uncertain outcomes
- Classical approach (de Finetti, Savage, Anscombe-Aumann): even under uncertainty, betting behavior allows to infer subjective probability measure P
- Large decision-theoretic literature on ambiguity aversion
- Many applications for single agent problems or large competitive economies
- Fewer investigations in strategic environments
Uncertainty in Games

Classic Game Theory
- Players use pure strategies ...
- and mixed strategies = roulette wheels
- evaluate payoffs according to expected utility

Our Approach: Ellsberg Urns as Strategies in Uncertainty–Averse Environments
- imagine a player is allowed to use an Ellsberg urn
- ... credibly, and commit to use it
- for example, through a trustworthy laboratory
- what are the consequences for noncooperative games?
Back to von Neumann and Morgenstern

A Game

Let $N = \{1, \ldots, n\}$ be the set of players. Each player has a finite strategy set $S_i, i = 1, \ldots, N$. Players’ payoffs are given by functions

$$u_i : S \to \mathbb{R} \quad (i \in N).$$

Randomization

- von Neumann and Morgenstern allow players to use probability vectors p_i over S_i.
- and impose expected utility (linearity in payoffs over probabilities).
Back to von Neumann and Morgenstern

A Game

Let $N = \{1, \ldots, n\}$ be the set of players. Each player has a finite strategy set $S_i, i = 1, \ldots, N$. Players’ payoffs are given by functions

$$u_i : S \rightarrow \mathbb{R} \quad (i \in N).$$

Randomization

- von Neumann and Morgenstern allow players to use probability vectors p_i over S_i.
- and impose expected utility (linearity in payoffs over probabilities)
A Game

Let $N = \{1, \ldots, n\}$ be the set of players. Each player has a finite strategy set $S_i, i = 1, \ldots, N$. Players’ payoffs are given by functions $u_i : S \rightarrow \mathbb{R}$ ($i \in N$).

Randomization

- von Neumann and Morgenstern allow players to use probability vectors p_i over S_i
- and impose expected utility (linearity in payoffs over probabilities)
A Game

Let $N = \{1, \ldots, n\}$ be the set of players. Each player has a finite strategy set S_i, $i = 1, \ldots, N$. Players’ payoffs are given by functions $u_i : S \to \mathbb{R}$ ($i \in N$).

Randomization

- von Neumann and Morgenstern allow players to use probability vectors p_i over S_i.
- and impose expected utility (linearity in payoffs over probabilities).
Justification for Randomization

Justification in zero–sum games (von Neumann, Morgenstern)

- convexity of strategy sets
- you want to use mixed strategies to conceal your behavior
- Stackelberg version argument
Justification for Randomization

Justification in zero–sum games (*von Neumann, Morgenstern*)

- convexity of strategy sets
- you want to use mixed strategies to conceal your behavior
- Stackelberg version argument

... nonzero–sum games
Justification for Randomization

Justification in zero–sum games (von Neumann, Morgenstern)

- convexity of strategy sets
- you want to use mixed strategies to conceal your behavior
- Stackelberg version argument

... nonzero–sum games

Schelling: argument by vNM not valid in common interest games
Justification for Randomization

Justification in zero–sum games (*von Neumann, Morgenstern*)

- convexity of strategy sets
- you want to use mixed strategies to conceal your behavior
- Stackelberg version argument

... nonzero–sum games

- *Schelling*: argument by vNM not valid in common interest games
- *Harsanyi*: purification via perturbed payoffs
- *Aumann, Brandenburger*: belief about other players' pure strategy choice
- *Rény–Robson*: Unification of both approaches
Justification for Randomization

Justification in zero–sum games (von Neumann, Morgenstern)

- convexity of strategy sets
- you want to use mixed strategies to conceal your behavior
- Stackelberg version argument

... nonzero–sum games

- *Schelling*: argument by vNM not valid in common interest games
- *Harsanyi*: purification via perturbed payoffs
- *Aumann, Brandenburger*: belief about other players’ pure strategy choice
- *Rény–Robson*: Unification of both approaches
Justification for Randomization

Justification in zero-sum games (von Neumann, Morgenstern)
- convexity of strategy sets
- you want to use mixed strategies to conceal your behavior
- Stackelberg version argument

... nonzero-sum games
- *Schelling*: argument by vNM not valid in common interest games
 - *Harsanyi*: purification via perturbed payoffs
 - *Aumann, Brandenburger*: belief about other players’ pure strategy choice
 - *Rény–Robson*: Unification of both approaches
Justification for Randomization

Justification in zero–sum games (von Neumann, Morgenstern)

- convexity of strategy sets
- you want to use mixed strategies to conceal your behavior
- Stackelberg version argument

... nonzero–sum games

- Schelling: argument by vNM not valid in common interest games
- Harsanyi: purification via perturbed payoffs
- Aumann, Brandenburger: belief about other players’ pure strategy choice
- Rény–Robson: Unification of both approaches
Justification for Randomization

Justification in zero–sum games (*von Neumann, Morgenstern*)

- convexity of strategy sets
- you want to use mixed strategies to conceal your behavior
- Stackelberg version argument

... nonzero–sum games

- *Schelling*: argument by vNM not valid in common interest games
- *Harsanyi*: purification via perturbed payoffs
- *Aumann, Brandenburger*: belief about other players’ pure strategy choice
- *Rény–Robson*: Unification of both approaches
Justification for Randomization

Justification in zero–sum games (von Neumann, Morgenstern)

- convexity of strategy sets
- you want to use mixed strategies to conceal your behavior
- Stackelberg version argument

... nonzero–sum games

- Schelling: argument by vNM not valid in common interest games
- Harsanyi: purification via perturbed payoffs
- Aumann, Brandenburger: belief about other players’ pure strategy choice
- Rény–Robson: Unification of both approaches
Further Literature

- **Bade**, GEB 2010, Ambiguous Act Equilibria in two Player Games
- Uncertainty about Beliefs about other players’ actions:
 - **Dow, Werlang**, JET 1994
 - **Lo**, JET 1996
 - **Marinacci**, GEB 2000
 - **Klibanoff**, 1996
 - **Ryan**, ET 2002
 - **Eichberger, Kelsey**, GEB 2000, JET 2002
 - **Eichberger, Kelsey, Schipper**, OEP 2009
 - **Mukerji, Shin**, ATE 2002
- to be continued . . .
Ellsberg Urns as Strategies

“I play Up if a red ball is drawn from this urn that contains 100 red and blue balls in unknown proportions.”

Ellsberg urns

- Player i chooses $(\Omega, \mathcal{F}, \mathcal{P})$
- $\Omega \neq \emptyset$, \mathcal{F} σ-field, \mathcal{P} set of probability measures on the measurable space (Ω, \mathcal{F})
- Ellsberg strategy is such a model plus a measurable act $f_i : \Omega \rightarrow \Delta S_i$
- ΔS_i: objective mixed strategies as before
Ellsberg Urns as Strategies

“I play Up if a red ball is drawn from this urn that contains 100 red and blue balls in unknown proportions.”

Ellsberg urns

- player i chooses $(\Omega, \mathcal{F}, \mathcal{P})$
- $\Omega \neq \emptyset$, \mathcal{F} σ–field, \mathcal{P} set of probability measures on the measurable space (Ω, \mathcal{F})
- Ellsberg strategy is such a model plus a measurable act $f_i : \Omega \rightarrow \Delta S_i$
- ΔS_i: objective mixed strategies as before
Ellsberg Urns as Strategies

“I play Up if a red ball is drawn from this urn that contains 100 red and blue balls in unknown proportions.”

Ellsberg urns

- player i chooses $(\Omega, \mathcal{F}, \mathcal{P})$
- $\Omega \neq \emptyset$, \mathcal{F} σ-field, \mathcal{P} set of probability measures on the measurable space (Ω, \mathcal{F})
- Ellsberg strategy is such a model plus a measurable act $f_i : \Omega \rightarrow \Delta S_i$
- ΔS_i: objective mixed strategies as before
Ellsberg Urns as Strategies

“I play Up if a red ball is drawn from this urn that contains 100 red and blue balls in unknown proportions.”

Ellsberg urns

- player i chooses $(\Omega, \mathcal{F}, \mathcal{P})$
- $\Omega \neq \emptyset$, \mathcal{F} σ–field, \mathcal{P} set of probability measures on the measurable space (Ω, \mathcal{F})
- Ellsberg strategy is such a model plus a measurable act $f_i : \Omega \rightarrow \Delta S_i$
- ΔS_i: objective mixed strategies as before
Ellsberg Urns as Strategies

“I play \textit{Up} if a red ball is drawn from this urn that contains 100 red and blue balls in unknown proportions.”

Ellsberg urns

- player \(i\) chooses \((\Omega, \mathcal{F}, \mathcal{P})\)
- \(\Omega \neq \emptyset\), \(\mathcal{F}\) \(\sigma\)-field, \(\mathcal{P}\) set of probability measures on the measurable space \((\Omega, \mathcal{F})\)
- Ellsberg strategy is such a model plus a measurable act
 \(f_i : \Omega \rightarrow \Delta S_i\)
- \(\Delta S_i\): objective mixed strategies as before
Ellsberg Urns as Strategies: Discussion

Remark

- Bade introduces "ambiguous acts" as measurable mappings $f_i : \Omega \to \Delta S_i$ and ambiguity-averse preferences over such acts and consistency of beliefs.

- we have "objective ambiguity" as characterized by Gajdos, Hayashi, Tallon, Vergnaud, JET 2008 and Giraud, Raphael, 2011.
Remark

Bade introduces “ambiguous acts” as measurable mappings
$f_i : \Omega \to \Delta S_i$ and ambiguity–averse preferences over such acts
and consistency of beliefs.

we have “objective ambiguity” as characterized by Gajdos,
Hayashi, Tallon, Vergnaud, JET 2008 and Giraud, Raphael,
2011
Remark

- Bade introduces “ambiguous acts” as measurable mappings $f_i : \Omega \rightarrow \Delta S_i$ and ambiguity-averse preferences over such acts and consistency of beliefs.

- we have “objective ambiguity” as characterized by Gajdos, Hayashi, Tallon, Vergnaud, JET 2008 and Giraud, Raphael, 2011
Ellsberg Game

- as von Neumann and Morgenstern, we need to decide how players evaluate Ellsberg urns
- All players are ambiguity–averse and use a pessimistic approach
- payoff of player i for profile (f_1, \ldots, f_N) (and Ellsberg urns $(\Omega_j, \mathcal{F}_j, \mathcal{P}_j)$)

$$U_i(f) = \min_{P_1 \in \mathcal{P}_1, \ldots, P_n \in \mathcal{P}_n} \int_{\Omega_1} \cdots \int_{\Omega_n} u_i(f_1(\omega_1), \ldots, f_n(\omega_n)) \, dP_n \cdots dP_1.$$
Ellsberg Game

- as von Neumann and Morgenstern, we need to decide how players evaluate Ellsberg urns
- All players are ambiguity-averse and use a pessimistic approach
- payoff of player i for profile (f_1, \ldots, f_N) (and Ellsberg urns $(\Omega_j, \mathcal{F}_j, \mathcal{P}_j)$)

$$U_i(f) = \min_{P_1 \in \mathcal{P}_1, \ldots, P_n \in \mathcal{P}_n} \int_{\Omega_1} \cdots \int_{\Omega_n} u_i(f_1(\omega_1), \ldots, f_n(\omega_n)) dP_n \cdots dP_1.$$
as von Neumann and Morgenstern, we need to decide how players evaluate Ellsberg urns.

All players are ambiguity-averse and use a pessimistic approach.

payoff of player i for profile (f_1, \ldots, f_N) (and Ellsberg urns $(\Omega_j, \mathcal{F}_j, \mathcal{P}_j)$)

$$U_i(f) = \min_{P_1 \in \mathcal{P}_1, \ldots, P_n \in \mathcal{P}_n} \int_{\Omega_1} \cdots \int_{\Omega_n} u_i(f_1(\omega_1), \ldots, f_n(\omega_n)) dP_n \cdots dP_1.$$
Ellsberg Equilibrium

An *Ellsberg equilibrium* is a profile of Ellsberg urns
\[(\Omega^1, \mathcal{F}^1, \mathcal{P}^1), \ldots, (\Omega^n, \mathcal{F}^n, \mathcal{P}^n)\] and acts \(f^* = (f^*_1, \ldots, f^*_n)\) such that no player has an incentive to deviate, i.e. for all players \(i \in N\) and all Ellsberg urns \((\Omega_i, \mathcal{F}_i, \mathcal{P}_i)\), and all acts \(f_i\) for player \(i\) we have

\[U_i(f^*) \geq U_i(f_i, f^* _i).\]
Ellsberg Equilibrium: Reduced Form

As in correlated equilibrium, only the laws of the acts f_i on ΔS_i matter; one can thus go directly to sets of probability measures on ΔS_i

Definition

A *reduced form Ellsberg equilibrium* is a profile of sets of probability measures $\mathcal{P}_i^* \subseteq \Delta S_i$, such that for all players $i \in N$ and all sets of probability measures \mathcal{P}_i on S_i we have

$$\min_{P_1 \in \mathcal{P}_1^*, \ldots, P_n \in \mathcal{P}_n^*} \int_S u_i(s) dP_1 \ldots dP_n \geq \min_{P_i \in \mathcal{P}_i, P_{-i} \in \mathcal{P}_{-i}^*} \int_S u_i(s_i, s_{-i}) dP_1 \ldots dP_n$$
General Remarks

- One does not improve one’s own payoff by introducing more ambiguity (as players are ambiguity-averse).
- Consequence: if all other players play classic Nash, the Nash equilibrium strategy is a best reply as well.
- Ellsberg equilibrium is a coarsening of the concept of Nash equilibrium.
- In particular, Ellsberg equilibria exist.
- Can one get interesting equilibria outside the set of Nash equilibria?
General Remarks

- One does not improve one’s own payoff by introducing more ambiguity (as players are ambiguity-averse).
- Consequence: if all other players play classic Nash, the Nash equilibrium strategy is a best reply as well.
- Ellsberg equilibrium is a coarsening of the concept of Nash equilibrium.
- In particular, Ellsberg equilibria exist.
- Can one get interesting equilibria outside the set of Nash equilibria?
General Remarks

- One does not improve one’s own payoff by introducing more ambiguity (as players are ambiguity-averse).
- Consequence: if all other players play classic Nash, the Nash equilibrium strategy is a best reply as well.
- Ellsberg equilibrium is a coarsening of the concept of Nash equilibrium.
 - in particular, Ellsberg equilibria exist
 - can one get interesting equilibria outside the set of Nash equilibria?
General Remarks

- One does not improve one’s own payoff by introducing more ambiguity (as players are ambiguity-averse).
- Consequence: if all other players play classic Nash, the Nash equilibrium strategy is a best reply as well.
- Ellsberg equilibrium is a coarsening of the concept of Nash equilibrium.
- In particular, Ellsberg equilibria exist.
- Can one get interesting equilibria outside the set of Nash equilibria?
General Remarks

- One does not improve one’s own payoff by introducing more ambiguity (as players are ambiguity-averse).
- Consequence: if all other players play classic Nash, the Nash equilibrium strategy is a best reply as well.
- Ellsberg equilibrium is a coarsening of the concept of Nash equilibrium.
- In particular, Ellsberg equilibria exist.
- Can one get interesting equilibria outside the set of Nash equilibria?
Greenberg’s Example

- Unique Nash Equilibrium: A mixes uniformly, B plays War, C mixes uniformly
- War occurs with probability 1
Greenberg’s Example

- Unique Nash Equilibrium: A mixes uniformly, B plays War, C mixes uniformly.
- War occurs with probability 1.
Greenberg’s Example in Normal Form

<table>
<thead>
<tr>
<th></th>
<th>war</th>
<th>peace</th>
<th></th>
<th>war</th>
<th>peace</th>
</tr>
</thead>
<tbody>
<tr>
<td>war</td>
<td>0,9,1</td>
<td>0,9,1</td>
<td>peace</td>
<td>9,0,0</td>
<td>9,0,0</td>
</tr>
<tr>
<td>peace</td>
<td>3,9,0</td>
<td>4,4,4</td>
<td></td>
<td>6,0,1</td>
<td>4,4,4</td>
</tr>
</tbody>
</table>

Punish A

Punish B
Suppose C plays the Ellsberg strategy \([0, 1]\), i.e. all probabilities between 0 and 1 possible for “Punish A”

- if A plays War, minimal expected payoff 0
- \((\text{peace, peace, } [0, 1])\) is an Ellsberg equilibrium
Greenberg’s Example: Ellsberg Equilibrium

- Suppose C plays the Ellsberg strategy \([0, 1]\), i.e. all probabilities between 0 and 1 possible for “Punish A”
- if A playes War, minimal expected payoff 0
- \((\text{peace, peace, } [0, 1])\) is an Ellsberg equilibrium
Suppose C plays the Ellsberg strategy \([0, 1]\), i.e. all probabilities between 0 and 1 possible for “Punish A”

- if A plays War, minimal expected payoff 0
- \((peace, peace, [0, 1])\) is an Ellsberg equilibrium
Greenberg’s Example: Conclusion

- there exist Ellsberg equilibria that lie outside the union of the support of all Nash equilibria
- empirically testable conclusion
- ambiguity has a strategic use as a threat in negotiations
Greenberg’s Example: Conclusion

- there exist Ellsberg equilibria that lie outside the union of the support of all Nash equilibria
- empirically testable conclusion
- ambiguity has a strategic use as a threat in negotiations
Greenberg’s Example: Conclusion

- there exist Ellsberg equilibria that lie outside the union of the support of all Nash equilibria
- empirically testable conclusion
- ambiguity has a strategic use as a threat in negotiations
Bade 2010: the support of Ellsberg equilibria is contained in the union of supports of Nash equilibria

so “indistinguishable”? We do not think so. Interesting effects:

- nonlinear payoffs
- immunization against strategic ambiguity
- equilibria “easier” to play than classical mixed strategy equilibria
Two–Player Games

- Bade 2010: the support of Ellsberg equilibria is contained in the union of supports of Nash equilibria
- so “indistinguishable”? We do not think so. Interesting effects:
 - nonlinear payoffs
 - immunization against strategic ambiguity
 - equilibria “easier” to play than classical mixed strategy equilibria
Bade 2010: the support of Ellsberg equilibria is contained in the union of supports of Nash equilibria

so “indistinguishable”? We do not think so. Interesting effects:

- nonlinear payoffs
- immunization against strategic ambiguity
- equilibria “easier” to play than classical mixed strategy equilibria
Bade 2010: the support of Ellsberg equilibria is contained in the union of supports of Nash equilibria

so “indistinguishable”? We do not think so. Interesting effects:

- nonlinear payoffs
- immunization against strategic ambiguity
- equilibria “easier” to play than classical mixed strategy equilibria
Two–Player Games

- Bade 2010: the support of Ellsberg equilibria is contained in the union of supports of Nash equilibria
- so “indistinguishable”? We do not think so. Interesting effects:
 - nonlinear payoffs
 - immunization against strategic ambiguity
 - equilibria “easier” to play than classical mixed strategy equilibria
Modified Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>HEAD</th>
<th>TAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAD</td>
<td>3,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>TAIL</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>

- unique Nash: player 1 plays HEAD with 1/2, layer 2 with 1/3,
- equilibrium payoffs 1/3 and 0
Modified Matching Pennies

<table>
<thead>
<tr>
<th></th>
<th>HEAD</th>
<th>TAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAD</td>
<td>3,-1</td>
<td>-1,1</td>
</tr>
<tr>
<td>TAIL</td>
<td>-1,1</td>
<td>1,-1</td>
</tr>
</tbody>
</table>

- unique Nash: player 1 plays HEAD with 1/2, layer 2 with 1/3,
- equilibrium payoffs 1/3 and 0
Full ambiguity is not an equilibrium

- Suppose player 2 uses an Ellsberg strategy that allows for any $0 \leq Q \leq 1$ for HEAD.
- Player 1 has then a unique best reply.
- Play HEAD with probability $1/3$.
- If she does so, payoff always
 \[
 \frac{1}{3} \cdot (3Q - (1 - Q)) + \frac{2}{3} \cdot (-q + (1 - q)) = \frac{1}{3},
 \]
 independent of Q.
- Immunization against Q.
Full ambiguity is not an equilibrium

- suppose player 2 uses an Ellsberg strategy that allows for any $0 \leq Q \leq 1$ for HEAD
- player 1 has then a unique best reply
- play HEAD with probability $1/3$
- if she does so, payoff always
 \[
 \frac{1}{3} \cdot (3Q - (1 - Q)) + \frac{2}{3} \cdot (-q + (1 - q)) = \frac{1}{3},
 \]
 independent of Q
- immunization against Q
Full ambiguity is not an equilibrium

- Suppose player 2 uses an Ellsberg strategy that allows for any $0 \leq Q \leq 1$ for HEAD.
- Player 1 has then a unique best reply:
 - Play HEAD with probability $1/3$.
 - If she does so, payoff always
 $$
 \frac{1}{3} \cdot (3Q - (1 - Q)) + \frac{2}{3} \cdot (-q + (1 - q)) = \frac{1}{3},
 $$
 independent of Q.
- Immunization against Q.
Full ambiguity is not an equilibrium

- suppose player 2 uses an Ellsberg strategy that allows for any $0 \leq Q \leq 1$ for HEAD
- player 1 has then a unique best reply
- play HEAD with probability $1/3$
 - if she does so, payoff always
 \[
 \frac{1}{3} \cdot (3Q - (1 - Q)) + \frac{2}{3} \cdot (-q + (1 - q)) = \frac{1}{3},
 \]
 independent of Q
- immunization against Q
Full ambiguity is not an equilibrium

- Suppose player 2 uses an Ellsberg strategy that allows for any $0 \leq Q \leq 1$ for HEAD.
- Player 1 has then a unique best reply.
- Play HEAD with probability $1/3$.
- If she does so, payoff always
 $1/3 \cdot (3Q - (1 - Q)) + 2/3 \cdot (-q + (1 - q)) = 1/3,$
 independent of Q.
- Immunization against Q.

Ellsberg Equilibria
Full ambiguity is not an equilibrium

- suppose player 2 uses an Ellsberg strategy that allows for any \(0 \leq Q \leq 1\) for HEAD
- player 1 has then a unique best reply
- play HEAD with probability \(1/3\)
- if she does so, payoff always
 \[
 \frac{1}{3} \cdot (3Q - (1 - Q)) + \frac{2}{3} \cdot (-q + (1 - q)) = \frac{1}{3},
 \]
 independent of \(Q\)
- immunization against \(Q\)
Suppose Player 2 plays the Ellsberg strategy \([q_0, q_1]\) with \(q_0 < \frac{1}{3} < q_1\), say \(q_0 = \frac{1}{4}, q_1 = \frac{2}{3}\)

Then the expected payoff from playing \(p\) for HEAD is

\[
\begin{align*}
&\text{plot}\left(\min\left(\frac{3\cdot p}{4} - \frac{p}{4} - \frac{(1-p)\cdot 1}{4} + \frac{(1-p)\cdot 3}{4}, \frac{3\cdot p}{3} - \frac{p}{3} - \frac{(1-p)\cdot 2}{3} + \frac{(1-p)\cdot 1}{3}\right), p = 0..1\right);
\end{align*}
\]
Ellsberg Equilibria II

How do the Ellsberg equilibria look like?

- player 1 plays HEAD with probability $P \in [1/2, P_1]$, $P_1 \geq 1/2$
- player 2 plays HEAD with probability $Q \in [1/3, Q_1]$, $Q_1 \leq 1/2$
- equilibrium payoffs are the same as in Nash equilibrium

Remark
How do the Ellsberg equilibria look like?

- player 1 plays HEAD with probability $P \in [1/2, P_1]$, $P_1 \geq 1/2$
- player 2 plays HEAD with probability $Q \in [1/3, Q_1]$, $Q_1 \leq 1/2$
- equilibrium payoffs are the same as in Nash equilibrium

Remark

“easier” to play: player 1 has to play HEAD with probability 50% or more

broader prediction than Nash, but still restrictive prediction

consistent with empirical findings of Goeree and Holt, AER 2001
How do the Ellsberg equilibria look like?

- player 1 plays HEAD with probability $P \in [1/2, P_1]$, $P_1 \geq 1/2$
- player 2 plays HEAD with probability $Q \in [1/3, Q_1]$, $Q_1 \leq 1/2$
- equilibrium payoffs are the same as in Nash equilibrium

Remark

“easier” to play: player 1 has to play HEAD with probability 50% or more
Ellsberg Equilibria II

How do the Ellsberg equilibria look like?

- player 1 plays HEAD with probability $P \in [1/2, P_1]$, $P_1 \geq 1/2$
- player 2 plays HEAD with probability $Q \in [1/3, Q_1]$, $Q_1 \leq 1/2$
- equilibrium payoffs are the same as in Nash equilibrium

Remark

- “easier” to play: player 1 has to play HEAD with probability 50 % or more
- broader prediction than Nash, but still restrictive prediction
- consistent with empirical findings of Goeree and Holt, AER 2001
Ellsberg Equilibria II

How do the Ellsberg equilibria look like?

- player 1 plays HEAD with probability $P \in [1/2, P_1]$, $P_1 \geq 1/2$
- player 2 plays HEAD with probability $Q \in [1/3, Q_1]$, $Q_1 \leq 1/2$
- equilibrium payoffs are the same as in Nash equilibrium

Remark

- “easier” to play: player 1 has to play HEAD with probability 50% or more
- broader prediction than Nash, but still restrictive prediction
- consistent with empirical findings of Goeree and Holt, AER 2001
Ellsberg Equilibria II

How do the Ellsberg equilibria look like?

- player 1 plays HEAD with probability $P \in [1/2, P_1], P_1 \geq 1/2$
- player 2 plays HEAD with probability $Q \in [1/3, Q_1], Q_1 \leq 1/2$
- equilibrium payoffs are the same as in Nash equilibrium

Remark

- “easier” to play: player 1 has to play HEAD with probability 50 % or more
- broader prediction than Nash, but still restrictive prediction
- consistent with empirical findings of Goeree and Holt, AER 2001
How do the Ellsberg equilibria look like?

- player 1 plays HEAD with probability $P \in [1/2, P_1]$, $P_1 \geq 1/2$
- player 2 plays HEAD with probability $Q \in [1/3, Q_1]$, $Q_1 \leq 1/2$
- equilibrium payoffs are the same as in Nash equilibrium

Remark

- “easier” to play: player 1 has to play HEAD with probability 50 % or more
- broader prediction than Nash, but still restrictive prediction
- consistent with empirical findings of Goeree and Holt, AER 2001
Ellsberg Equilibria II

How do the Ellsberg equilibria look like?

- player 1 plays HEAD with probability $P \in [1/2, P_1]$, $P_1 \geq 1/2$
- player 2 plays HEAD with probability $Q \in [1/3, Q_1]$, $Q_1 \leq 1/2$
- equilibrium payoffs are the same as in Nash equilibrium

Remark

- “easier” to play: player 1 has to play HEAD with probability 50 % or more
- broader prediction than Nash, but still restrictive prediction
- consistent with empirical findings of Goeree and Holt, AER 2001
Consider the competitive two–person 2×2 game with payoff matrix

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>L</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>a, d</td>
<td>b, e</td>
</tr>
<tr>
<td>D</td>
<td>b, e</td>
<td>c, f</td>
</tr>
</tbody>
</table>

such that

$$a, c > b \text{ and } d, f < e.$$
Ellsberg Equilibria III

Theorem

Let \([(P^*, 1 - P^*), (Q^*, 1 - Q^*)]\) denote the unique Nash equilibrium. Then the Ellsberg equilibria of the game are the following: For \(P^* > Q^*\) all Ellsberg equilibria are of the form

\[
([P^*, P_1], [Q^*, Q_1]) \text{ for } P^* \leq P_1 \leq 1, \ Q^* \leq Q_1 \leq P^*;
\]

for \(P^* < Q^*\) all Ellsberg equilibria are of the form

\[
([P_0, P^*], [Q_0, Q^*]) \text{ for } 0 \leq P_0 \leq P^*, \ P^* \leq Q_0 \leq Q^*;
\]

and for \(P^* = Q^*\) all Ellsberg equilibria are of the form

\[
(Q^*, [Q_0, Q_1]) \text{ where } Q_0 \leq Q^* \leq Q_1
\]

and

\[
([P_0, P_1], P^*) \text{ where } P_0 \leq P^* \leq P_1.
\]
Goeree–Holt Experiment

<table>
<thead>
<tr>
<th></th>
<th>HEAD</th>
<th>TAIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAD</td>
<td>320,40</td>
<td>40,80</td>
</tr>
<tr>
<td>TAIL</td>
<td>40,80</td>
<td>80,40</td>
</tr>
</tbody>
</table>

- **observation:** most row players play HEAD, column players close to Nash
- **Nash equilibrium:** \(((1/2, 1/2), (1/8, 7/8)) \)
- **Ellsberg equilibrium:**

\[
([1/2, \bar{p}], [1/8, \bar{q}]) \text{ with } 1/2 \leq \bar{p} \leq 1 \text{ and } 1/8 \leq \bar{q} \leq 1/2.
\]
Further Topics

- Subjective Equilibria
- Selfconfirming Equilibrium
- Games in Extensive Form
Further Topics

- Subjective Equilibria
- Selfconfirming Equilibrium
- Games in Extensive Form
Further Topics

- Subjective Equilibria
- Selfconfirming Equilibrium
- Games in Extensive Form
Summary

- going back to the foundations of game theory
- coarsening of the original formulation
- players allowed to play Ellsberg urns
- evaluate uncertainty pessimistically
- coarsening of Nash
- new, interesting phenomena, ambiguity as a threat, immunization, simpler to play