ALPHA Beam Characterization

- Device Test Area Overview
- Beam Characteristics
- Diagnostic Equipment
- Calibration
- Measurement Accuracy
Device Test Area Overview

- Extraction Line
- DUT Table
- Beam Dump
Beam Characteristics

• What do we want to measure?
 – Incident Dose Intensity
 • Beam current incident on the sample
 • Temporal profile of the incident beam
 – Pulse length and uniformity
 – Debunching efficiency
 – Transmitted Dose Intensity
 • Beam current passing through the sample
 – Incident Dose Profile
Diagnostic Equipment

- **Wall Gap Monitor**
 - Incident beam current
 - Incident beam pulse length and uniformity
 - Debunching efficiency
Diagnostic Equipment

• Beam Position Monitor
 – Transverse beam position
 – Incident beam current
 – Incident beam pulse length and uniformity

Microstrip design allows a higher bandwidth than the WGM

UP
DOWN
LEFT
RIGHT
Diagnostic Equipment

A plastic scintillator produces a beam spot bright enough to view with an ordinary camera with minimal shower production.

- Removable Scintillator Screen
 - Transverse beam profile
 - Qualitative measure of beam current
 - Before or after DUT? Or both?
• **Faraday Cup**
 – Incident or transmitted beam current
 – Also designed to eliminate most backscattered radiation in the DUT area
Potential Diagnostic Equipment

• Ion Chamber
 – Thin ion chambers may be placed before and after the DUT with minimal beam perturbation
 – 2D Ion Chamber for real-time dose profile?
• PIN Diode Detectors
Calibration

• Beam current diagnostics calibration
 – The WGM and BPMs can be calibrated on the test bench using a current carrying wire to simulate beam
 • Beam time structure measurements can be similarly calibrated with a 3GHz pulse
 – The FC current measurement can be calibrated using the signal from the WGM or BPMs
Calibration

• Dose diagnostics calibration
 – TLD crystals will be used for calibration of delivered dose intensity
 • TLD analysis equipment will be available on-site
 – Dosimetry film can be used to verify dose intensity and distribution.
 • Intensity needs to be calibrated using TLDs

Gaussian Beam

Square Beam

ALPHA Film Profile Measurements
Measurement Accuracy

• Beam current diagnostics accuracy
 – When using well-shielded cables, the WGM and BPMs produce low-noise signals that can be calibrated precisely
 – The FC is designed to capture 95% of the incoming charge, but measurement is highly repeatable

• Dose diagnostics accuracy
 – TLD reader calibration will be NIST traceable
 – Dosimetry film is standard in radiation therapy
Any additional requests or suggestions?