Lecture 16– gene mutations
I. Gene mutations
 A. Change from wild type
 1. forward mutation

 2. reverse mutation (reversion)

 3. mutation

 B. Types mutations
 1. base-pair substitutions
 a. at DNA level
 i. transition
 \[T \rightarrow C, C \rightarrow T, A \rightarrow G, G \rightarrow A \]
 ii. transversion
 \[T \rightarrow A, T \rightarrow G, C \rightarrow A, C \rightarrow G \]
 A \rightarrow T, G \rightarrow T, A \rightarrow C, G \rightarrow C
 b. at protein level
 i. silent mutation
 ii. synonymous mutation
 iii. conservative mutation
 iv. missense mutation
 v. nonsense mutation

 2. frameshift

 C. Molecular basis of mutation
 - examples

- examples
II. Somatic vs germ line
 A. somatic mutation
 1. if in dividing cells
 - recessive
 - dominant
 - the earlier in development the mutation arises, the larger the mutant sector will be
 2. if in non-dividing cells
 - most likely to have little or no effect
 - an exception is cancerous mutation
 3. can somatic mutation be passed to progeny?
 - note that in plants germ line produced by somatic cells
 B. germ line mutation

III. Mutant types
 A. loss-of-function (null) - null = no gene function
 B. gain-of-function - generally dominant
 C. 3rd type of dominant mutation: dominant negative

IV. Are mutations induced by selective conditions?
 A. mutations are relatively random events
 - some mutations adaptive – permit under selective conditions (eg. resistance)
 B. pre-existing mutations are selected for
 - several experiments showed that mutations already present in population
How was this demonstrated?
- Replica plate (lederberg)

C. spontaneous mutation rates
1. *E. coli*

2. *Drosophila yellow*

3. human