Resistance to Bacterial Pathogens in Plants

Jules Ade, Indiana University, Bloomington, Indiana, USA
Roger W Innes, Indiana University, Bloomington, Indiana, USA

To successfully infect a plant, pathogens must overcome three layers of defense: (1) preformed physical barriers; (2) a cell-surface-based surveillance system that detects conserved pathogen molecules and (3) an intracellular surveillance system that detects effector proteins injected into host cells. Bacterial plant pathogens overcome the first layer either by invading through natural openings and wounds, and/or by secreting hydrolytic enzymes that break down surface layers. Bacteria typically overcome the second layer by injecting effectors that interfere with defense signaling. Bacteria overcome the third layer either by modifying or eliminating existing effectors, or by evolving new effectors that suppress defense activation.

Introduction

Plant pathogenic bacteria can multiply rapidly inside plant tissue under favourable conditions, causing many serious diseases of crops, with major economic impacts. Bacterial pathogens get access to the plant milieu through mechanical openings such as wounds and pruning cuts, or through natural openings such as hydathodes (the termini of leaf veins located on the edges of leaves) and stomata (pores in the leaf surface through which gases exchange). Disease symptoms caused by bacterial pathogens include wilts, galls, specks, spots, cankers and chlorosis (yellowing). For example, wilt-causing bacteria clog the vascular tissue, preventing movement of water and nutrients. The most studied plant pathogenic bacteria belong to the genera Pseudomonas, Xanthomonas, Erwinia, Ralstonia and Agrobacterium. Recently, Xylella fastidiosa has received intense scrutiny due to fears that it may cause major losses to the grape harvest in California.

Plants have evolved several different defence mechanisms to prevent bacterial infection. Unlike vertebrates that have an adaptive immune system, plants have to rely solely on their innate immune system to defend themselves against invading pathogens. Plant bacterial pathogens, and in general other pathogens, reveal themselves to the host immune system through molecules called pathogen-associated molecular patterns (PAMPs), such as flagellin or bacterial lipopolysaccharides (LPS). Since nonpathogenic bacteria also have these structures, PAMPs are also referred to as microbe-associated molecular patterns. As discussed in detail later, plants have evolved specialized cell-surface receptors to detect conserved features of PAMPs and activate defence responses. In this article, we will discuss how these receptors are thought to activate defences, how bacterial pathogens circumvent this basal defence system and how plants have evolved a second defence layer.

Pre-formed Barriers to Infection by Bacterial Pathogens

The first line of protection from an initial pathogen infection is achieved through passive defence mechanisms such as physical and chemical barriers. The plant epidermis is covered by a waxy cuticle and each cell is surrounded by a complex cell wall containing highly crosslinked polysaccharides, proteins and phenolic compounds that bacterial pathogens must overcome to access cell nutrients. To breach these barriers, many plant pathogenic bacteria produce a range of extracellular virulence factors such as cutin-degrading enzymes and cell wall-degrading enzymes. These enzymes are typically secreted via a type II secretion system and include cell wall-degrading enzymes such as cellulases, pectinases and endoglucanases. Such enzymes are particularly important in causing soft-rot diseases induced by bacteria in the Erwinia genus.

Basal Defence against Bacterial Pathogens

During the initial contact between a plant and a bacterial pathogen, the plant can detect bacterial PAMPs such as flagellin and LPS. The perception of PAMPs activates signal-transduction cascades that turn on basal defences. These basal defence responses include callose and silicone deposition to reinforce the cell wall, production of reactive oxygen species and ethylene, transcriptional induction of a large suite of defence genes, including pathogenesis-related genes (PR) and post-transcriptional suppression of the auxin-signalling pathway. These responses are triggered by plant extracellular receptors specialized in the recognition of PAMPs termed pattern recognition receptors (PRRs).
These basal defences are generally sufficient to halt the growth of pathogenic and nonpathogenic microbes and prevent their establishment.

A well-characterized bacterial molecule that activates host basal defences is flagellin, the major protein component of bacterial flagella. A 22-amino-acid peptide derived from bacterial flagellin called flg22 can induce basal defence responses such as alkalinization of the extracellular space and production of active oxygen species (Felix et al., 1999). In Arabidopsis, the response includes closure of stomata, which restricts bacterial penetration. Flagellin and flg22 are detected in Arabidopsis by the PRR FLS2, which is a transmembrane receptor kinase.

Arabidopsis fls2 mutants are more susceptible to infection by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) when the bacteria are applied to the leaf surface, but not when the bacteria are infiltrated into the leaf intercellular space (Zipfel et al., 2004). This observation indicates that FLS2 activates early defence responses that restrict penetration of bacterial pathogens into the plant tissue. Consistent with this conclusion, the FLS2 protein is expressed in epidermal cells and stomatal-guard cells, as well as mesophyll cells and cells in the stem, flower petals and roots.

Recently, flagellin has also been shown to downregulate the messenger ribonucleic acid (mRNA) levels of specific auxin receptor genes (Navarro et al., 2006). Interestingly, this downregulation was shown to occur via a post-transcriptional mechanism employing the microRNA miR393. Flagellin induces expression of miR393, which then targets cleavage of mRNAs from the auxin-receptor genes, TIR1, AFB2 and AFB3. This, in turn, blocks induction of auxin-responsive genes that would otherwise be induced by pathogens such as P. syringae that are known to produce auxin. Suppression of auxin signalling contributes to basal resistance as overexpression of auxin receptors enhances susceptibility to P. syringae (Navarro et al., 2006).

In addition to flagellin, the elongation factor Tu (EF-Tu), which is the most abundant protein in a growing bacterial cell, acts as an inducer of basal defences in plants (Kunze et al., 2004). EF-Tu is a 43 kDa protein. The N-terminal 18 amino acids of EF-Tu, elf18, can trigger basal defences by itself. Recognition of elf18 in Arabidopsis occurs through a receptor-like kinase (RLK) named EF-Tu receptor (EFR). EFR has a similar structure to FLS2, including an extracellular leucine-rich repeats (LRR) domain and an intracellular kinase domain (Zipfel et al., 2006). Transformation of Nicotiana benthamiana, which is unable to perceive EF-Tu, with EFR confers the ability to respond to elf18. Likewise, Arabidopsis plants containing mutations in EFR are unable to respond to elf18. Such efr
Bacterial Interference with Basal Defences

Successful pathogens must suppress or otherwise overcome basal defences. As mentioned earlier, stomata function as gates to efficiently block bacterial penetration into plant leaves through the sensing of bacterial flagellin and LPS. One strategy developed by phytopathogenic bacteria to defeat this defence is the secretion of the virulence factor coronatine (COR), a small molecule that mimics the plant hormone jasmonic acid (Melotto et al., 2006). COR-mediated suppression of stomatal closure occurs via the inhibition of PAMP-induced abscisic acid (ABA) signalling in the guard cell. Coronatine minus bacterial mutants display reduced virulence compared to wild-type bacteria when inoculated on to the leaf surface. This reduction of virulence in cor mutants is not observed when the bacteria are syringe infiltrated directly into the leaf apoplast, a procedure which bypasses the stomatal barrier.

To avoid detection and therefore prevent PTI, many other bacterial pathogens have found ways to mask or hide their PAMPs (Figure 1). An example is A. tumefaciens, which has a modified flagellin that cannot be detected efficiently by the Arabidopsis flagellin receptor FLS2 (Gomez-Gomez et al., 1999). Similarly, variation of flagellin in Xanthomonas campestris pv. campestris strains allows this bacterial pathogen to avoid detection by FLS2 (Sun et al., 2006). These variations are indicative of selection pressure for evolving unrecognizable PAMPs.

Another strategy used by bacterial pathogens to colonize host plants is the suppression of basal defences by specialized effector proteins (Figure 1). Such effectors are typically translated directly from bacterial cells into the host cell cytoplasm using a type III secretion system (T3SS), which is found in all Pseudomonas pathovars, Ralstonia solanacearum, Xanthomonas and Erwinia and also many mammalian pathogens such as Salmonella and Shigella (Hueck, 1998). T3SS-deficient bacteria induce strong basal defences in plants and are unable to grow or cause disease symptoms.

An example of a T3SS effector protein that suppresses basal defences is AvrPto from P. syringae pv. tomato. AvrPto can block callose deposition in tomato plants induced by T3SS-deficient P. syringae (Hauck et al., 2003). In Arabidopsis, the effector proteins AvrRpt2 from P. syringae pv. tomato (Pst) and AvrRpm1 from P. syringae pv. maculicola (Psm) suppress basal defences by inhibiting defence signalling induced by FLS2 and other putative PAMP receptors (Kim et al., 2005). Transgenic overexpression of AvrRpm1 in Arabidopsis leaves enables a T3SS-deficient P. syringae strain to grow to near wild-type levels (Kim et al., 2005).

Effector-triggered Immunity, a Second Layer of the Plant Immune System

Although T3SS effectors can shut down basal defence signalling, plants have evolved a second layer of defence that can detect the presence of T3SS effectors inside the plant cell. This detection system employs intracellular receptors encoded by ‘disease-resistance’ (R) genes. The majority of plant R proteins contain a nucleotide-binding site and LRR (LRR–LRR). NBS–LRR proteins mediate resistance against a large range of plant pathogens. Activation of an R protein by a pathogen effector protein typically leads to activation of programmed cell death of plant cells surrounding the pathogen. This localized cell death is referred to as the hypersensitive response (HR) and such R protein-mediated resistance is referred to as effector-triggered immunity (ETI).

In addition to activation of programmed cell death, R protein-mediated resistance is associated with production of reactive oxygen species and nitric oxide, which appear to function both as signalling agents and as direct antimicrobial agents. Reactive oxygen species in concert...
with nitric oxide (NO) trigger transcriptional activation of plant defence genes and the HR. It is proposed that superoxide anion (O$_2^-$) and NO react with each other to form highly toxic peroxynitrite (ONOO$^-$), which may be directly or indirectly involved in killing pathogens and host cells (Saito et al., 2006). In self defence, pathogens have evolved a battery of enzymes, antioxidants and free-radical scavengers to combat these molecules.

A newly emerging concept is the ability of some R proteins to induce small interfering RNA (siRNA)-mediated gene silencing. In Arabidopsis, the RPS2 R protein was shown to induce the siRNA nat-siRNAATGB2, which leads to the silencing of the PPRL gene (Katiyar-Agarwal et al., 2006). Overexpression of PPRL specifically reduces RPS2-mediated resistance to P. syringae, thus it appears that the RPS2 signalling pathway is negatively regulated by PPRL mRNA. Whether or not bacterial pathogens can co-opt siRNA and miRNA regulatory circuits to enhance pathogenesis is still an open question.

At the molecular level, recognition of pathogen effectors by plant R proteins can either be direct or indirect (Figure 2). The direct recognition model, also termed the ligand–receptor model, proposes that disease-resistant proteins function as receptors to bind pathogen-encoded effector proteins directly. To date, only one example of direct recognition has been observed for a bacterial pathogen, Ralstonia solanacearum, in which the R protein RRS1 binds directly to the R. solanacearum-effector PopP2 (Deslandes et al., 2003). The indirect mode of recognition, also termed the ‘Guard model’, involves the detection of modifications made to host proteins by effectors. This mode of recognition seems to be common in bacterial pathogens and has been observed for the P. syringae effectors AvrPphB, AvrRpm1/AvrB, AvrRpt2 and AvrPtoB (Kim et al., 2002; Mackey et al., 2002; Axtell and Staskawicz, 2003; Ade et al., 2007).

Support for the indirect recognition model comes from work on two Arabidopsis R proteins, RPM1 and RPS2, which monitor the status of the Arabidopsis RIN4 protein. Specifically, RPM1 appears to detect phosphorylation of RIN4 induced by the P. syringae effectors AvrRpm1 and AvrB (Mackey et al., 2002). Additional support of the indirect recognition model comes from work on the Arabidopsis RPS5 protein, which monitors the status of the Arabidopsis PBS1 protein. PBS1 is cleaved by the cysteine protease AvrPphB, a P. syringae effector protein. Cleavage of PBS1 is detected by RPS5, which then activates an HR (Figure 2) (Ade et al., 2007). RPM1, RPS2 and RPS5 all physically associate with their ‘guardees’ prior to pathogen exposure. These R proteins thus function as sentinels to look out for damage caused to potential targets of pathogen effectors. See also: Plant Resistance to Infection by Viruses

Suppression of Effector-triggered Immunity by Bacterial Pathogens

When new resistance traits are bred into crop varieties, such resistance is often overcome by new pathogen strains, leading to a new round of resistance breeding. This unending war between the plant and the pathogen has received much research attention. Several studies have recently provided insight into this phenomenon. Just as bacterial pathogens have developed strategies to suppress PTI, they have also developed mechanisms to suppress ETI. One of these ETI-suppressing strategies is the development of new effectors to suppress the R gene-mediated hypersensitive response associated with disease resistance. For example, the P. syringae pv. syringae effectors HopAB1 and HopZ3 are able to suppress programmed cell death initiated by other effectors of P. syringae pv. syringae in the plant N. benthamiana (Vinatzer et al., 2006). Deletion of HopAB1 and HopZ3 from P. syringae pv. syringae restores its ability to trigger the HR. Likewise, effectors such as AvrPtoB, HopPtoE, AvrPphE$_{Pto}$, AvrPpiB1$_{Pto}$ and HopPtoF from Pst DC3000 are able to suppress effector-triggered programmed cell death in tobacco. P. syringae pv. phaseolicola also contains effectors that suppress the effector-triggered PCD in bean in a cultivar-specific manner. Recently, the effector HopM1 from P. syringae was shown to destroy the immunity-associated protein AtMIN7 and cause infection in the model plant Arabidopsis (Nomura et al., 2006). Taken together, these studies show that in a large range of plant species, the bacterial pathogen P. syringae is able to suppress the effector-triggered HR, an important component of ETI, and cause disease.

Figure 2 Direct and indirect recognition of bacterial effectors: (a) The bacterial pathogen R. solanacearum injects the effector protein PopP2 into the plant cell. PopP2 is detected by the disease-resistance protein RRS1 via direct binding, which activates downstream signalling events leading to disease resistance. (b) Pseudomonas syringae injects the effector protein AvrPphB into the plant cell. AvrPphB functions as a protease to catalyse cleavage of the host kinase PBS1. This modification is detected by the disease resistance protein RPS5, which then activates disease resistance.
Future Perspectives

The complete genome sequences of several plant bacterial pathogens are now available, which is greatly facilitating the discovery of genes that contribute to pathogenicity. Comparative genomic analyses will enable identification of novel virulence factors through targeted investigation of genes that are unique to specific pathogens. These analyses will be a powerful tool for identification of genes involved in host specificity and virulence.

Even though significant progress has been made towards understanding how plant pathogenic bacteria cause disease, there are still many unanswered questions. In particular, the targets of the majority of bacterial T3SS effector proteins remain unknown. Identification of these targets is critical to our understanding of how bacterial pathogens cause disease in plants. In addition, we do not know which effector targets are monitored by R proteins. Identifying effector targets will thus help us understand both bacterial pathogenesis and host resistance. How R proteins are activated by effectors to induce defence responses, including the HR, is also unclear and needs further investigation.

Finally, the biggest challenge for the future is applying our increasing knowledge of the plant immune system to development of more disease-resistant crops, and in particular, development of crops that display durable resistance across time and space. Identification of key effector targets, and the R proteins that guard them, may facilitate development of such crops.

Acknowledgements

We would like to thank members of our laboratory for helpful discussion. Work in our laboratory is supported by the US National Institutes of Health (grant numbers R01 GM046451 and R01 GM063761 to R.W.I.) and National Science Foundation (grant number DBI-0321664).

References

Further Reading

