LOGIC AND THE SIZES OF SETS

Larry Moss, Indiana University

EASLLI 2014

Map of Some Natural Logics

first-order logic

 $FO^2 + "R"$ is trans"

2 variable FO logic

† adds full N-negation

 $\mathcal{RC}(tr)$ + opposites \mathcal{RC} + (transitive) comparative adjs \mathcal{R} + relative clauses

S + full N-negation

 $\mathcal{R}=\mathsf{relational}$ syllogistic

 S^{\geq} adds $|p| \geq |q|$

S: all/some/no p are q

BEYOND FIRST-ORDER LOGIC: CARDINALITY

Read $\exists \geq (X, Y)$ as "there are at least as many Xs as Ys".

$$\frac{All\ Y\ are\ X}{\exists^{\geq}(X,Y)} \qquad \frac{\exists^{\geq}(X,Y)\quad \exists^{\geq}(Y,Z)}{\exists^{\geq}(X,Z)}$$

$$\frac{All\ Y\ are\ X}{All\ X\ are\ Y} \qquad \text{finiteness}$$

$$\frac{\textit{Some Y are Y} \quad \exists^{\geq}(X,Y)}{\textit{Some X are X}} \qquad \frac{\textit{No Y are Y}}{\exists^{\geq}(X,Y)}$$

The point here is that by working with a weak basic system, we can say things which cannot be said in first-order logic.

An example of the main part of the proof

Suppose that Γ is the following set of sentences:

All p are qThere are at least as many q as pAll q are sThere are at least as many r as sThere are at least as many s as rThere are at least as many s as s There are at least as many x as wThere are at least as many x as rAll y are zThere are at least as many w as zAll z are vThere are at least as many s as v

We define relations \leq and \leq_c in the obvious way, and draw a picture.

The lines are the \leq_c relation, reading upward, with the stronger \leq relations shown.

An example of the main part of the proof

The lines are the \leq_c relation, reading upward, with the stronger \leq relations shown.

We start with distinct elements $*_p = *_q, *_r, *_s, *_w, *_x, *_y, *_z$. We construct sets to interpret these variables going "bottom-up" using the listing of \mathcal{V}/\equiv_c :

Each time we need fresh elements, we shall use numbers.

Every sentence φ follows from Γ iff it $\mathfrak{M} \models \varphi$.

We just saw S^{\leq} .

We now come to a logic which I'll call S_{\leq}^{\dagger} . Perhaps the largest known complete logic about the sizes of subsets of a finite universe.

- ► All, Some, There are at least as many x as y, written $\exists^{\geq}(x,y)$ There are more x than y, written $\exists^{>}(x,y)$
- ightharpoonup Complemented variables x'

A lot of the action in the axiomatization has to do with assertions

$$\exists^{\geq}(x,x')$$
 at least half of all objects are x 's $\exists^{\geq}(x',x)$ at least half of all objects are non- x 's \equiv at most half of all objects are x 's $\exists^{\geq}(x,x')$ more than half of all objects are x 's $\exists^{\geq}(x',x)$ more than half of all objects are non- x 's \equiv less than half of all objects are x 's

$$\frac{\exists (\rho, p)}{\exists (\rho, q)} \text{ (axiom)} \qquad \frac{\forall (n, p)}{\forall (n, q)} \text{ (Barbara)} \qquad \frac{\exists (\rho, q)}{\exists (\rho, p)} \text{ (some)}$$

$$\frac{\exists (q, p)}{\exists (\rho, q)} \text{ (conversion)} \qquad \frac{\forall (\rho, q)}{\forall (q', p')} \text{ (anti)} \qquad \frac{\forall (\rho, p')}{\forall (\rho, q)} \text{ (zero)}$$

$$\frac{\exists (\rho, n)}{\exists (\rho, q)} \text{ (Darii)} \qquad \frac{\forall (\rho', \rho)}{\forall (q, p)} \text{ (one)} \qquad \frac{\forall (\rho, q)}{\exists \geq (q, \rho)} \text{ (subset-size)}$$

$$\frac{\exists \geq (\rho, q)}{\exists \geq (q', p')} \text{ (card-mon)} \qquad \frac{\exists \geq (\rho, q)}{\exists \geq (q', p')} \text{ (card-anti)} \qquad \frac{\forall (\rho, q)}{\forall (q, \rho)} \text{ (ard-mix)}$$

$$\frac{\exists (\rho, \rho)}{\exists (q, q)} \text{ (card-\exists)} \qquad \frac{\forall (q, \rho)}{\exists \geq (\rho, q')} \text{ (more)} \qquad \frac{\exists \geq (\rho, q)}{\exists (\rho, q')} \text{ (more-some)}$$

$$\frac{\exists \geq (\rho, q)}{\exists \geq (\rho, q)} \text{ (more-at least)} \qquad \frac{\exists \geq (\rho, \rho)}{\exists \geq (\rho, q)} \text{ (more-left)} \qquad \frac{\exists \geq (\rho, \rho)}{\exists \geq (\rho', q')} \text{ (more-anti)}$$

$$\frac{\exists (\rho, \rho)}{\exists (q, q)} \text{ (int)} \qquad \frac{\exists \geq (\rho, \rho')}{\exists \geq (\rho, q)} \text{ (half)} \qquad \frac{\exists \geq (\rho, \rho')}{\exists \geq (\rho', q)} \text{ (strict half)}$$

$$\frac{\exists (\rho, q)}{\forall (\rho', q')} \text{ (x)} \qquad \frac{\exists \geq (\rho, q)}{\exists (\rho', q')} \text{ (maj)}$$

THE LOGIC OF MOST X ARE YAND NOT MOST X ARE Y

Our next-to-last logic strikes off in a different direction.

We take sentences of the form M(X, Y) and $\neg M(X, Y)$.

We call this logic $\mathcal{L}(most)$.

SEMANTICS OF $\mathcal{L}(most)$

A model of this tiny language is a structure $\mathfrak{M}=(M,\llbracket\ \rrbracket)$ consisting of a finite set M together with interpretations $\llbracket X\rrbracket\subseteq M$ of each X.

We then interpret our sentences in a model as follows

$$\begin{split} \mathfrak{M} &\models M(X,Y) &\quad \text{iff} \quad |\llbracket X \rrbracket \cap \llbracket Y \rrbracket| > \frac{1}{2} |\llbracket X \rrbracket| \\ \mathfrak{M} &\models \neg M(X,Y) &\quad \text{iff} \quad |\llbracket X \rrbracket \cap \llbracket Y \rrbracket| \leq \frac{1}{2} |\llbracket X \rrbracket| \end{split}$$

ARE THERE ANY VALID PRINCIPLES AT ALL?

$$\frac{M(X,Y) \quad M(Y,Z)}{M(X,Z)} ???$$

$$\frac{M(X,Y)}{M(X,Y)} ???$$

$$\frac{M(Y,X)}{M(X,Y)} ???$$

$$\frac{M(X,Y)}{M(X,X)} ???$$

An example of the kind of question we are interested in

Let

$$\Gamma = \left\{ \begin{array}{ccc} M(X,Y) & M(Z,Y) \\ M(Y,X) & M(Y,W) \\ M(X,Z) & \neg M(W,Y) \\ \neg M(Z,X) & M(Z,W) \\ M(Y,Z) & \end{array} \right\}$$

Is it true or not that

$$\Gamma \models M(W,Z)$$
 ?

An example of the kind of question we are interested in

Let

$$\Gamma = \left\{ \begin{array}{ll} M(X,Y) & M(Z,Y) \\ M(Y,X) & M(Y,W) \\ M(X,Z) & \neg M(W,Y) \\ \neg M(Z,X) & M(Z,W) \\ M(Y,Z) & \end{array} \right\}$$

Is it true or not that

$$\Gamma \models M(W,Z)$$
 ?

I claim that the answer is no. We shall take the graph below

and turn the nodes g into sets A_g so that $g \to h$ iff "most A_g are A_h ."

The heart of the completeness argument

A majority graph is a finite simple graph (G, \rightarrow) such that there exist finite sets A_g for $g \in G$ with the following property:

$$g \to h$$
 if and only if "more than half of the A_g are A_h ".

That is,

$$g \to h$$
 iff $|A_g \cap A_h| > \frac{1}{2} \cdot |A_g|$.

The heart of the completeness argument

A majority graph is a finite simple graph (G, \rightarrow) such that there exist finite sets A_g for $g \in G$ with the following property:

 $g \to h$ if and only if "more than half of the A_g are A_h ".

That is,

$$g \to h$$
 iff $|A_g \cap A_h| > \frac{1}{2} \cdot |A_g|$.

A two-way edge in a graph is an edge $g \to h$ such that also $h \to g$. A one-way edge in a graph is an edge $g \to h$ such that $h \not\to g$.

If G is a majority graph and there is a one-way edge from g to h, then $|A_h|>|A_\sigma|$.

Observation by Chloe Urbanski

Thus G cannot have one-way cycles: there are no paths

$$g_1 \to g_2 \to \cdots \to g_n = g_1$$

such that $g_{i+1} \not\to g_i$. (There may be cycles with two-way edges.)

Answer

THEOREM (TRI LAI 2013)

Every graph without one-way cycles is a majority graph.

THEOREM (TRI LAI 2013)

Every graph without one-way cycles is a majority graph.

We can even get a stronger result. For any $\alpha \in (0,1)$, we say that G is a proportionality α -graph if there are sets A_g for $g \in G$ such that

$$g \to h$$
 iff $|A_g \cap A_h| > \alpha \cdot |A_g|$.

THEOREM (TRI LAI, JÖRG ENDRULLIS, AND LM 2013)

For all $\alpha \in (0,1)$, every graph without one-way cycles is a proportionality α -graph.

ILLUSTRATION OF HOW THE PROOF GOES

Our goal is to find sets for the graph below:

ILLUSTRATION OF HOW THE PROOF GOES

Our goal is to find sets for the graph below:

We begin with four subsets of $\{1, \ldots, 16\}$ each of size 8, with the property that distinct sets have intersections of size 4:

$$A_X = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$A_Y = \{1, 2, 3, 4, 9, 10, 11, 12\}$$

$$A_Z = \{1, 2, 5, 6, 9, 10, 13, 14\}$$

$$A_W = \{1, 3, 5, 7, 9, 11, 13, 15\}$$

For $i \neq j$, we write $A_i \square A_i$ for the private intersection:

$$A_i \sqcap A_j = (A_i \cap A_j) \setminus \bigcup_{k \neq i,j} A_k$$

ILLUSTRATION OF HOW THE PROOF GOES

Our goal is to find sets for the graph below:

We begin with four subsets of $\{1, \ldots, 16\}$ each of size 8, with the property that distinct sets have intersections of size 4:

$$A_X = \{1, 2, 3, 4, 5, 6, 7, 8\}$$

$$A_Y = \{1, 2, 3, 4, 9, 10, 11, 12\}$$

$$A_Z = \{1, 2, 5, 6, 9, 10, 13, 14\}$$

$$A_W = \{1, 3, 5, 7, 9, 11, 13, 15\}$$

For $i \neq j$, we write $A_i \square A_i$ for the private intersection:

$$A_i \cap A_i = (A_i \cap A_i) \setminus \bigcup_{k \neq i} A_k$$

For $i \neq j$, $A_i \sqcap A_j$ has size 1. For example, $A_X \sqcap A_Z = \{6\}$.

So far, we have

Z W

We replace each point x by three copies of itself, 3x - 2, 3x - 1, and 3x.

```
\begin{array}{rcl} A_X & = & \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24\} \\ A_Y & = & \{1,2,3,4,5,6,7,8,9,10,11,12,25,26,27,28,29,30,31,32,33,34,35,36\} \\ A_Z & = & \{1,2,3,4,5,6,13,14,15,16,17,18,25,26,27,28,29,30,37,38,39,40,41,42\} \\ A_W & = & \{1,2,3,7,8,9,13,14,15,19,20,21,25,26,27,31,32,33,37,38,39,43,44,45\} \end{array}
```

We then take three fresh points, 49, 50, and 51, add them to all sets A_i .

Then add one new point to A_Y , two new points to A_Z , and three to A_W .

At this point, we have


```
\begin{array}{lll} A_X & = & \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,49,50,51\} \\ A_Y & = & \{1,2,3,4,5,6,7,8,9,10,11,12,25,26,27,28,29,30,31,32,33,34,35,36,49,50,51,52\} \\ A_Z & = & \{1,2,3,4,5,6,13,14,15,16,17,18,25,26,27,28,29,30,37,38,39,40,41,42,49,50,51,53,54\} \\ A_W & = & \{1,2,3,7,8,9,13,14,15,19,20,21,25,26,27,31,32,33,37,38,39,43,44,45,49,50,51,55,56,57\} \end{array}
```

Now
$$|A_X| = 27$$
, $|A_Y| = 28$, $|A_Z| = 29$, and $|A_W| = 30$.

For
$$i \neq j$$
, $|A_i \cap A_j| = 15$, and $|A_i \cap A_j| = 3$.


```
 \begin{array}{lll} A_X & = & \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,49,50,51\} \\ A_Y & = & \{1,2,3,4,5,6,7,8,9,10,11,12,25,26,27,28,29,30,31,32,33,34,35,36,49,50,51,52\} \\ A_Z & = & \{1,2,3,4,5,6,13,14,15,16,17,18,25,26,27,28,29,30,37,38,39,40,41,42,49,50,51,53,54\} \\ A_W & = & \{1,2,3,7,8,9,13,14,15,19,20,21,25,26,27,31,32,33,37,38,39,43,44,45,49,50,51,55,56,57\} \\ \end{array}
```

We have already arranged that $A_X \to A_Y$ and $A_Y \to A_X$.

Here is how we arrange that $A_X \rightarrow A_Z$ and $A_Z \not\rightarrow A_X$.

Take the "private intersection" $A_X \sqcap A_Z = \{16, 17, 18\}$. Remove 16 from A_X and A_Z , and return it as two fresh points $58 \in A_X$ and $59 \in A_Z$.

The point is that now $|A_X \cap A_Z| = 14$, and $\frac{14}{29} < \frac{1}{2} < \frac{14}{27}$.

Similar tricks arrange all of our other requirements.

We get

```
\begin{array}{lll} A_X & = & \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,22,23,24,49,50,51,58,60,61,62\} \\ A_Y & = & \{1,2,3,4,5,6,7,8,9,10,11,12,25,26,27,28,29,30,31,32,33,34,35,36,49,50,51,52\} \\ A_Z & = & \{1,2,3,4,5,6,13,14,15,17,18,25,26,27,28,29,30,37,38,39,40,41,42,49,50,51,53,54,59\} \\ A_W & = & \{1,2,3,7,8,9,13,14,15,25,26,27,31,32,33,37,38,39,43,44,45,49,50,51,55,56,57,63,64,65\} \end{array}
```

This exhibits our graph G as a majority graph.

```
\begin{array}{rcl} A_X & = & \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,22,23,24,49,50,51,58,60,61,62\} \\ A_Y & = & \{1,2,3,4,5,6,7,8,9,10,11,12,25,26,27,28,29,30,31,32,33,34,35,36,49,50,51,52\} \\ A_Z & = & \{1,2,3,4,5,6,13,14,15,17,18,25,26,27,28,29,30,37,38,39,40,41,42,49,50,51,53,54,59\} \\ A_W & = & \{1,2,3,7,8,9,13,14,15,25,26,27,31,32,33,37,38,39,43,44,45,49,50,51,55,56,57,63,64,65\} \end{array}
```

Recall our set

$$\Gamma = \left\{ \begin{array}{ccc} M(X,Y) & M(Z,Y) \\ M(Y,X) & M(Y,W) \\ M(X,Z) & \neg M(W,Y) \\ \neg M(Z,X) & M(Z,W) \\ M(Y,Z) & \end{array} \right\}$$

We have built a model to see that

$$\Gamma \not\models M(W, Z)$$

THEOREM (TRI LAI 2013)

Every graph without one-way cycles is a majority graph.

THEOREM [LM]

Here is a complete logical system for this language.

$$\frac{M(X,Y)}{M(X,X)} \qquad \frac{M(X,Y)}{M(Y,Y)}$$

One of the infinitely many rules is

$$\frac{M(X,Y) \quad M(Y,Z) \quad M(Z,X) \quad \neg M(X,Z) \quad \neg M(Z,Y)}{M(Y,X)}$$

"There are no one-way cycles $X \to Y \to Z \to X$."

VARIATION: ALL, SOME, MOST

BUT NO NEGATION

$$\frac{\text{All } X \text{ are } X}{\text{All } X \text{ are } X} \quad \frac{\text{All } X \text{ are } Y \quad \text{All } Y \text{ are } Z}{\text{All } X \text{ are } Z}$$

$$\frac{\mathsf{Some}\;X\;\mathsf{are}\;Y}{\mathsf{Some}\;Y\;\mathsf{are}\;X}\quad \frac{\mathsf{Some}\;X\;\mathsf{are}\;Y}{\mathsf{Some}\;X\;\mathsf{are}\;X}\quad \frac{\mathsf{Some}\;X\;\mathsf{are}\;Y}{\mathsf{Some}\;X\;\mathsf{are}\;Z}$$

Can you think of any valid laws that add M(X, Y) on top of All X are Y and Some X are Y?

VARIATION: ALL, SOME, MOST

BUT NO NEGATION

$$\frac{\text{All } X \text{ are } X}{\text{All } X \text{ are } X} \quad \frac{\text{All } X \text{ are } Y \quad \text{All } Y \text{ are } Z}{\text{All } X \text{ are } Z}$$

 $\frac{\mathsf{Some}\;X\;\mathsf{are}\;Y}{\mathsf{Some}\;Y\;\mathsf{are}\;X}\quad \frac{\mathsf{Some}\;X\;\mathsf{are}\;Y}{\mathsf{Some}\;X\;\mathsf{are}\;X}\quad \frac{\mathsf{Some}\;X\;\mathsf{are}\;Y}{\mathsf{Some}\;X\;\mathsf{are}\;Z}$

 $\frac{\mathsf{Most}\;X\;\mathsf{are}\;Y}{\mathsf{Some}\;X\;\mathsf{are}\;Y}\;\;m_1\quad \frac{\mathsf{Some}\;X\;\mathsf{are}\;X}{\mathsf{Most}\;X\;\mathsf{are}\;X}\;\;m_2\quad \frac{\mathsf{Most}\;X\;\mathsf{are}\;Y}{\mathsf{Most}\;X\;\mathsf{are}\;Z}\;\;m_3$

 $\frac{\text{Most } X \text{ are } Z \quad \text{All } X \text{ are } Y \quad \text{All } Y \text{ are } X}{\text{Most } Y \text{ are } Z} \quad m_4$

 $\frac{\mathsf{All}\ Y\ \mathsf{are}\ X}{\mathsf{Most}\ X\ \mathsf{are}\ Y} \, \frac{\mathsf{All}\ X\ \mathsf{are}\ Z}{\mathsf{Most}\ X\ \mathsf{are}\ Y} \, m_5$

 $\frac{X_1 \triangleright_{A,B} Y_1 \quad Y_1 \triangleright_{B,A} X_2 \quad \cdots \quad X_n \triangleright_{A,B} Y_n \quad Y_n \triangleright_{B,A} X_1}{\mathsf{Some} \ A \ \mathsf{are} \ B} \ \triangleright$

The last infinite batch of rules

$$\frac{X_1 \triangleright_{A,B} Y_1 \quad Y_1 \triangleright_{B,A} X_2 \quad \cdots \quad X_n \triangleright_{A,B} Y_n}{\mathsf{Some} \ A \ \mathsf{are} \ B} \triangleright_{Y_n \triangleright_{B,A} X_1}$$

Examples:

infer

$$\frac{\mathsf{Most}\ Z\ \mathsf{are}\ X\quad \mathsf{Most}\ Z\ \mathsf{are}\ Y}{\mathsf{Some}\ X\ \mathsf{are}\ Y}\ \triangleright$$

Another example: From

Most X are B', All A' are A, Most Y are A', All B' are B, All X are Y Most Y are A'', All A'' are A, Most X are B'', All B'' are B, All A'' are X

Some A are B.

What derivations look like

As an example, Some X are X, All X are $Y \vdash Most X$ are Y via the tree below:

Some X are X Most X are X All X are Y Most X are Y

RESULTS

THEOREM (JÖRG ENDRULLIS & LM (2013))

The logical system for this language is complete.

THEOREM

Infinitely many axioms are needed in the system.

THEOREM

The decision problem for the consequence relation

$$\Gamma \vdash \varphi$$

is in polynomial time.

OPEN QUESTION

▶ Get a such complete logic for

All
$$X$$
 are Y Some X are Y Most X are Y No X are Y

and sentential \wedge , \vee , and \neg .

- ▶ Alternatively, prove that there is no such logic.
- ▶ Investigate the algorithmic properties of the logic.