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BEYOND FIRST-ORDER LOGIC: CARDINALITY

Read 32(X, Y) as “there are at least as many Xs as Ys".

ALY are X F(X,Y) 32(Y,2)
I2(X, Y) (X, 2)

ALY are X  32(Y,X)
All X are Y

finiteness

Some Y are Y 3Z(X,Y) No Y are Y
Some X are X 32(X,Y)

The point here is that by working with a weak basic system,
we can say things which cannot be said in first-order logic.
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AN EXAMPLE OF THE MAIN PART OF THE PROOF

Suppose that I is the following set of sentences:

All p are q There are at least as many x as w
There are at least as many q as p There are at least as many x as r
All g are s All y are z
There are at least as many r as s There are at least as many w as z
There are at least as many s as r All z are v
There are at least as many w as x There are at least as many s as v

We define relations < and <. in the obvious way, and draw a
picture.

The lines are the <. relation, reading upward, with the stronger <
relations shown.
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AN EXAMPLE OF THE MAIN PART OF THE

The lines are the <. relation, reading upward, with the stronger <
relations shown.
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We start with distinct elements %, = %q, %, *s, *u, *x, *,, *z.
We construct sets to interpret these variables going “bottom-up”
using the listing of V/ =.:

[p] W], [, ). (2], [v):

Each time we need fresh elements, we shall use numbers.

|[p]l = {*P} |[r]] = {*,,3,4,5,6,7}

|[q]l = {*P} |[5]I = {*Pv*h&gv 10711}
wl = {*w,1} vl = {x,12,...,22,23}
IxXI = {*x.2} [z21 = {xy,%:12,...,22,23}

vl = {xv, %y %2,12,..., 23,24,25,...,39}

Every sentence ¢ follows from I iff it M = .

PROOF
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We just saw S=.

We now come to a logic which I'll call S’<
Perhaps the largest known complete logic
about the sizes of subsets of a finite universe.

» All, Some,
There are at least as many x as y, written 32 (x, y)
There are more x than y, written 37 (x, y)

» Complemented variables x’

A lot of the action in the axiomatization has to do with assertions

32(x,x') at least half of all objects are x's

32(x’,x) at least half of all objects are non-x's
= at most half of all objects are x's

37 (x,x") more than half of all objects are x's

37(x’,x) more than half of all objects are non-x's
= less than half of all objects are x’s
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THE LOGIC OF MOST X ARE Y
AND NOT MOST X ARE Y

Our next-to-last logic strikes off in a different direction.
We take sentences of the form M(X,Y) and -M(X,Y).

We call this logic L(most).
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SEMANTICS OF L(most)

A model of this tiny language is a structure M = (M, [ ])
consisting of a finite set M
together with interpretations [X] € M of each X.

We then interpret our sentences in a model as follows
MEMX,Y) it [IXINIYD > 311X

M -M(X.Y) iff (IXIN YT < 41X
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ARE THERE ANY VALID PRINCIPLES AT ALL?

MX.Y) M(Y.Z)
M(X, 2)

77

MX.Y)

mx,v)

MY, X)

mx,v)

M(X.Y)

M, x)
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AN EXAMPLE OF THE KIND OF QUESTION WE ARE
INTERESTED IN

Let

M(X,Y) M(Z,Y)
M(Y, X) M(Y, W)
r = M(X, 2) “M(W,Y)
~M(Z,X) M(Z, W)
M(Y, Z)

Is it true or not that
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AN EXAMPLE OF THE KIND OF QUESTION WE ARE
INTERESTED IN

Let
M(X,Y) M(Z,Y)
M(Y, X) M(Y, W)
r = M(X, Z) -M(W,Y)
-M(Z,X) M(Z, W)
M(Y,Z)
Is it true or not that
r=Mw,z)?

| claim that the answer is no.
We shall take the graph below

X<—Y

e

zZ— W

and turn the nodes g into sets Ag so that g — h iff “most A are

Ay
10/25



THE HEART OF THE COMPLETENESS ARGUMENT

A majority graph is a finite simple graph (G, —) such that there
exist finite sets Ag for g € G with the following property:

g — hif and only if “more than half of the A, are Ap".

That is, )
g — h iff |AgN Ay > 5 |Ag|.
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THE HEART OF THE COMPLETENESS ARGUMENT

A majority graph is a finite simple graph (G, —) such that there
exist finite sets Ag for g € G with the following property:

g — hif and only if “more than half of the Az are Ap".

That is, )
g—h iff |[AgN Ay > 5 |Agl.

A two-way edge in a graph is an edge g — h such that also h — g.
A one-way edge in a graph is an edge g — h such that h /4 g.

If G is a majority graph and there is a one-way edge from g to h,
then |Ap| > |Ag|.

OBSERVATION BY CHLOE URBANSKI

Thus G cannot have one-way cycles: there are no paths

8178 — 8 =81

such that gi+1 / gi. (There may be cycles with two-way edges.)

11/25



ANSWER

Every graph without one-way cycles is a majority graph. l
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ANSWER

THEOREM (TRI LAI1 2013)

Every graph without one-way cycles is a majority graph.

We can even get a stronger result.

For any @ € (0,1), we say that G is a
proportionality a-graph

if there are sets A, for g € G such that

g—h iff |AgN Ay >a-|Agl

THEOREM (TRI LAI, JORG ENDRULLIS, AND LM 2013)

For all @ € (0,1),
every graph without one-way cycles is a proportionality a-graph.
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ILLUSTRATION OF HOW THE PROOF GOES
Our goal is to find sets for the graph below:

X <—Y

e

Z— W
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[LLUSTRATION OF HOW THE PROOF GOES

Our goal is to find sets for the graph below:

X<~—Y

e

Z— W

We begin with four subsets of {1,...,16} each of size 8, with the
property that distinct sets have intersections of size 4:

AX - {172:37475a677a8}

Ay = {1,2,3,4,9,10,11,12}
Az = {1,2,5,6,9,10,13,14}
Aw = {1,3,5,7,9,11,13,15}

For i # j, we write A;[A; for the private intersection:

AiTTA; = (AN A)\ Uiy jAx
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[LLUSTRATION OF HOW THE PROOF GOES

Our goal is to find sets for the graph below:

X<—Y

e

Z— W

We begin with four subsets of {1,...,16} each of size 8, with the
property that distinct sets have intersections of size 4:

Ax = {1,2,3,4,56,7,8}

Ay = {1,2,3,4,9,10,11,12}
Az = {1,2,5,6,9,10,13,14}
Aw = {1,3,5,7,9,11,13,15}

For i # j, we write A;MA; for the private intersection:

AiA; = (AN A)\ Ui Ax

For i # j, Ai T A; has size 1.
For example, Ax M Az = {6}.
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ILLUSTRATION, CONTINUED

So far, we have
X Y

V4 w

We replace each point x by three copies of itself, 3x — 2, 3x — 1,
and 3x.

Ax = {1,2,3,4,56,7,8,9,10,11,12,13,14, 15,16, 17,18, 19, 20, 21, 22, 23, 24}
Ay = {1,2,3,4,5,6,7,8,9,10,11,12,25, 26,27, 28,29, 30, 31, 32, 33, 34, 35, 36}
Az = {1,2,3,4,5,6,13, 14,15 16,17, 18,25, 26,27, 28,29, 30, 37, 38, 39, 40, 41, 42}
Aw = {1,2,3,7,8,9,13,14,15,19,20,21, 25, 26,27, 31, 32, 33, 37, 38, 39, 43, 44, 45}

We then take three fresh points, 49, 50, and 51, add them to all
sets A;.

Then add one new point to Ay, two new points to Az, and three

to Aw.
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ILLUSTRATION, CONTINUED

At this point, we have

X<—Y

Z<— W

Now |Ax| = 27, |Ay| =28, |Az| =29, and |Aw/| = 30.

For i # j, |AiN Aj| =15, and |A; M Aj| = 3.
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ILLUSTRATION, CONTINUED

7]

goal

N <—X

Ax = {1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 49, 50, 51}

Ay = {1,2,3,4,5,6,7,8,9,10, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 49, 50, 51, 52}

Az = {1,2,3,4,5,6,13, 14,15, 16, 17, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 49, 50, 51, 53, 54}
Aw = {1,2,3,7,8,9,13, 14,15, 19, 20, 21, 25, 26, 27, 31, 32, 33, 37, 38, 39, 43, 44, 45, 49, 50, 51, 55, 56, 57}

We have already arranged that Ax — Ay and Ay — Ax.
Here is how we arrange that Ax — Az and Az /4 Ax.

Take the “private intersection” Ax M Az = {16,17,18}.
Remove 16 from Ax and Az, and return it as two fresh points

58 € Ax and 59 € Ay.

The point is that now |[Ax N Az| =14, and 33 < $ < 3.
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ILLUSTRATION, CONTINUED

X <«—Y X<—Y
7 «—> W Z— W
current goal

Similar tricks arrange all of our other requirements.

We get
Ax = {1,2,3,4,5,6,7,8,9,10, 11, 12,13, 14, 15, 17, 18, 22, 23, 24, 49, 50, 51, 58, 60, 61, 62}
Ay = {1,2,3,4,5,6,7,8,9, 10, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 49, 50, 51, 52}
Az = {1,2,3,4,5,6,13, 14, 15, 17, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 49, 50, 51, 53, 54, 59}
Aw = {1,2,3,7,8,9,13, 14, 15, 25, 26, 27, 31, 32, 33, 37, 38, 39, 43, 44, 45, 49, 50, 51, 55, 56, 57, 63, 64, 65}

This exhibits our graph G as a majority graph.
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ILLUSTRATION, CONTINUED

Ax = {1,2,3,4,5,6,7,8,9,10,11, 12, 13, 14, 15, 17, 18, 22, 23, 24, 49, 50, 51, 58, 60, 61, 62}
Ay = {1,2,3,4,5,6,7,8,9,10,11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 49, 50, 51, 52}
Az = {1,2,3,4,5,6,13, 14,15, 17, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 49, 50, 51, 53, 54, 50}
Aw = {1, 2,3,7,8,9,13, 14, 15, 25, 26, 27, 31, 32, 33, 37, 38, 39, 43, 44, 45, 49, 50, 51, 55, 56, 57, 63, 64, 65}
Recall our set
M(X,Y) M(Z,Y)
M(Y X) M(Y, W)
r = M(X, 2) “M(W,Y)
-M(Z,X) M(Z, W)
M(Y,2)

We have built a model to see that

M MW, 2)
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RESuULTS

THEOREM (TRI LAr 2013)

Every graph without one-way cycles is a majority graph.

THEOREM [LM]

Here is a complete logical system for this language.

M(X,Y)  M(X,Y)
M(X,X)  M(Y,Y)

One of the infinitely many rules is

M(X,Y) M(Y,Z) M(Z,X) -M(X,Z) -M(Z,Y)

M(Y, X)

“There are no one-way cycles X — Y - Z — X."
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VARIATION: ALL, SOME, MOST

BUT NO NEGATION

All XareY AllY are Z
All X are X All X are Z

Some XareY Some XareY SomeXareY All YareZ
Some Y are X Some X are X Some X are Z

Can you think of any valid laws that add M(X, Y’) on top of
All X are Y and Some X are Y7
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VARIATION: ALL, SOME, MOST

BUT NO NEGATION

All XareY AllYareZ
All X are X All X are Z

Some XareY SomeXareY SomeXareY AllYareZ
Some Y are X Some X are X Some X are Z

Most X are Y my Some X are X mo Most X are Y All Y are Z
Some X are Y Most X are X Most X are Z

Most X are Z All XareY AllY are X
Most Y are Z

AllY are X All X are Z Most Z are Y
Most X are Y

Xioag Y1 YivgaXo -+ Xadar Ya YDBAX1
Some A are B
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THE LAST INFINITE BATCH OF RULES

Xioag Y1 YibgaXo - XpbaB Ya .
Some A are B Yn>p,a X1

Examples:

Most Z are X Most Z are Y >
Some X are Y

Another example: From

Most X are B’,All A" are A,Most Y are A/ All B’ are B,All X are Y
Most Y are A”, All A” are A, Most X are B”,All B are B, All A” are X

infer
Some A are B.
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WHAT DERIVATIONS LOOK LIKE

As an example, Some X are X, All X are Y F Most X are Y via the

tree below:
Some X are X

Most X are X All X are Y
Most X are Y
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RESuULTS

THEOREM (JORG ENDRULLIS & LM (2013))

The logical system for this language is complete.

Infinitely many axioms are needed in the system.

The decision problem for the consequence relation

N=o

is in polynomial time.
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OPEN QUESTION

» Get a such complete logic for

All X are Y Some X are Y Most X are Y
No X are Y 3Z(X,Y)

and sentential A, V, and —.

» Alternatively, prove that there is no such logic.

» Investigate the algorithmic properties of the logic.
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