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Beyond first-order logic: cardinality

Read ∃≥(X ,Y ) as “there are at least as many X s as Y s”.

All Y are X

∃≥(X ,Y )

∃≥(X ,Y ) ∃≥(Y ,Z )

∃≥(X ,Z )

All Y are X ∃≥(Y ,X )

All X are Y
finiteness

Some Y are Y ∃≥(X ,Y )

Some X are X

No Y are Y

∃≥(X ,Y )

The point here is that by working with a weak basic system,
we can say things which cannot be said in first-order logic.
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An example of the main part of the proof

Suppose that Γ is the following set of sentences:

All p are q

There are at least as many q as p

All q are s

There are at least as many r as s

There are at least as many s as r

There are at least as many w as x

There are at least as many x as w

There are at least as many x as r

All y are z

There are at least as many w as z

All z are v

There are at least as many s as v

We define relations ≤ and ≤c in the obvious way, and draw a
picture.
The lines are the ≤c relation, reading upward, with the stronger ≤
relations shown.

v

kkkkkkkkkkkkkkkk

z≤v

RRRRRRRRRRRRRRRR

r ≡c s
q≤s

llllllllllllll

SSSSSSSSSSSSSS
z

mmmmmmmmmmmmmmm

y≤z

O
OOOO

OOOOO
OOOO

q ≡ p w ≡c x y
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An example of the main part of the proof

The lines are the ≤c relation, reading upward, with the stronger ≤
relations shown.

v
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z≤v
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r ≡c s
q≤s
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y≤z

O
OOOOO

OOOOO
OOO

q ≡ p w ≡c x y

We start with distinct elements ∗p = ∗q, ∗r , ∗s , ∗w , ∗x , ∗y , ∗z .
We construct sets to interpret these variables going “bottom-up”
using the listing of V/ ≡c :

[p], [w ], [r ], [y ], [z ], [v ].

Each time we need fresh elements, we shall use numbers.

[[p]] = {∗p}
[[q]] = {∗p}
[[w ]] = {∗w , 1}
[[x ]] = {∗x , 2}

[[r ]] = {∗r , 3, 4, 5, 6, 7}
[[s]] = {∗p, ∗s , 8, 9, 10, 11}
[[y ]] = {∗y , 12, . . . , 22, 23}
[[z ]] = {∗y , ∗z , 12, . . . , 22, 23}
[[v ]] = {∗v , ∗y , ∗z , 12, . . . , 23, 24, 25, . . . , 39}

Every sentence ϕ follows from Γ iff it M |= ϕ.
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S
†
≤

We just saw S≤.
We now come to a logic which I’ll call S

†
≤.

Perhaps the largest known complete logic
about the sizes of subsets of a finite universe.

◮ All, Some,
There are at least as many x as y, written ∃≥(x , y)
There are more x than y, written ∃>(x , y)

◮ Complemented variables x ′

A lot of the action in the axiomatization has to do with assertions

∃≥(x , x ′) at least half of all objects are x ’s
∃≥(x ′, x) at least half of all objects are non-x ’s

≡ at most half of all objects are x ’s
∃>(x , x ′) more than half of all objects are x ’s
∃>(x ′, x) more than half of all objects are non-x ’s

≡ less than half of all objects are x ’s
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S
†
≤

∀(p, p)
(axiom)

∀(n, p) ∀(p, q)

∀(n, q)
(Barbara)

∃(p, q)

∃(p, p)
(some)

∃(q, p)

∃(p, q)
(conversion)

∀(p, q)

∀(q′, p′)
(anti)

∀(p, p′)

∀(p, q)
(zero)

∃(p, n) ∀(n, q)

∃(p, q)
(Darii)

∀(p′, p)

∀(q, p)
(one)

∀(p, q)

∃≥(q, p)
(subset-size)

∃≥(p, q)

∃≥(q′, p′)
(card-mon)

∃≥(p, q)

∃≥(q′, p′)
(card-anti)

∀(p, q) ∃≥(p, q)

∀(q, p)
(card-mix)

∃(p, p) ∃≥(p, q)

∃(q, q)
(card-∃)

∀(q, p) ∃(p, q′)

∃>(p, q)
(more)

∃>(p, q)

∃(p, q′)
(more-some)

∃>(p, q)

∃≥(p, q)
(more-at least)

∃>(n, p) ∃≥(p, q)

∃>(n, q)
(more-left)

∃>(q, p)

∃>(p′, q′)
(more-anti)

∃(p, p) ∃≥(q, q′)

∃(q, q)
(int)

∃≥(p, p′) ∃≥(q′, q)

∃≥(p, q)
(half)

∃>(p, p′) ∃≥(q′, q)

∃>(p, q)
(strict half)

∃≥(p, p′) ∃≥(q, q′) ∃(p′, q′)

∃(p, q)
(maj)

∃(p, q) ∀(p, q′)
ϕ (X)

∃>(p, q) ∃≥(q, p)
ϕ (X)
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The logic of most X are Y

and not most X are Y

Our next-to-last logic strikes off in a different direction.

We take sentences of the form M(X ,Y ) and ¬M(X ,Y ).

We call this logic L(most).
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Semantics of L(most)

A model of this tiny language is a structure M = (M, [[ ]])
consisting of a finite set M

together with interpretations [[X ]] ⊆ M of each X .

We then interpret our sentences in a model as follows

M |= M(X ,Y ) iff |[[X ]] ∩ [[Y ]]| > 1
2
|[[X ]]|

M |= ¬M(X ,Y ) iff |[[X ]] ∩ [[Y ]]| ≤ 1
2
|[[X ]]|
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Are there any valid principles at all?

M(X ,Y ) M(Y ,Z )

M(X ,Z )
???

M(X ,Y )

M(X ,Y )
???

M(Y ,X )

M(X ,Y )
???

M(X ,Y )

M(X ,X )
???
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An example of the kind of question we are
interested in

Let

Γ =























M(X ,Y )
M(Y ,X )
M(X ,Z )

¬M(Z ,X )
M(Y ,Z )

M(Z ,Y )
M(Y ,W )

¬M(W ,Y )
M(Z ,W )























Is it true or not that
Γ |= M(W ,Z ) ?
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An example of the kind of question we are
interested in

Let

Γ =























M(X ,Y )
M(Y ,X )
M(X ,Z )

¬M(Z ,X )
M(Y ,Z )

M(Z ,Y )
M(Y ,W )

¬M(W ,Y )
M(Z ,W )























Is it true or not that
Γ |= M(W ,Z ) ?

I claim that the answer is no.
We shall take the graph below

X Y

Z W

and turn the nodes g into sets Ag so that g → h iff “most Ag are
Ah.”
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The heart of the completeness argument

A majority graph is a finite simple graph (G ,→) such that there
exist finite sets Ag for g ∈ G with the following property:

g → h if and only if “more than half of the Ag are Ah”.

That is,

g → h iff |Ag ∩ Ah| >
1

2
· |Ag |.

11/25



The heart of the completeness argument

A majority graph is a finite simple graph (G ,→) such that there
exist finite sets Ag for g ∈ G with the following property:

g → h if and only if “more than half of the Ag are Ah”.

That is,

g → h iff |Ag ∩ Ah| >
1

2
· |Ag |.

A two-way edge in a graph is an edge g → h such that also h → g .
A one-way edge in a graph is an edge g → h such that h 6→ g .

If G is a majority graph and there is a one-way edge from g to h,
then |Ah| > |Ag |.

Observation by Chloe Urbanski

Thus G cannot have one-way cycles: there are no paths

g1 → g2 → · · · → gn = g1

such that gi+1 6→ gi . (There may be cycles with two-way edges.)

11/25



Answer

Theorem (Tri Lai 2013)

Every graph without one-way cycles is a majority graph.
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Answer

Theorem (Tri Lai 2013)

Every graph without one-way cycles is a majority graph.

We can even get a stronger result.
For any α ∈ (0, 1), we say that G is a
proportionality α-graph
if there are sets Ag for g ∈ G such that

g → h iff |Ag ∩ Ah| > α · |Ag |.

Theorem (Tri Lai, Jörg Endrullis, and LM 2013)

For all α ∈ (0, 1),
every graph without one-way cycles is a proportionality α-graph.
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Illustration of how the proof goes

Our goal is to find sets for the graph below:

X Y

Z W
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Illustration of how the proof goes

Our goal is to find sets for the graph below:

X Y

Z W

We begin with four subsets of {1, . . . , 16} each of size 8, with the
property that distinct sets have intersections of size 4:

AX = {1, 2, 3, 4, 5, 6, 7, 8}
AY = {1, 2, 3, 4, 9, 10, 11, 12}
AZ = {1, 2, 5, 6, 9, 10, 13, 14}
AW = {1, 3, 5, 7, 9, 11, 13, 15}

For i 6= j , we write Ai⊓Aj for the private intersection:

Ai ⊓ Aj = (Ai ∩ Aj) \
⋃

k 6=i ,j Ak
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Illustration of how the proof goes

Our goal is to find sets for the graph below:

X Y

Z W

We begin with four subsets of {1, . . . , 16} each of size 8, with the
property that distinct sets have intersections of size 4:

AX = {1, 2, 3, 4, 5, 6, 7, 8}
AY = {1, 2, 3, 4, 9, 10, 11, 12}
AZ = {1, 2, 5, 6, 9, 10, 13, 14}
AW = {1, 3, 5, 7, 9, 11, 13, 15}

For i 6= j , we write Ai⊓Aj for the private intersection:

Ai ⊓ Aj = (Ai ∩ Aj) \
⋃

k 6=i ,j Ak

For i 6= j , Ai ⊓ Aj has size 1.
For example, AX ⊓ AZ = {6}.
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Illustration, continued

So far, we have
X Y

Z W

We replace each point x by three copies of itself, 3x − 2, 3x − 1,
and 3x .

AX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}
AY = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}
AZ = {1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42}
AW = {1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21, 25, 26, 27, 31, 32, 33, 37, 38, 39, 43, 44, 45}

We then take three fresh points, 49, 50, and 51, add them to all
sets Ai .

Then add one new point to AY , two new points to AZ , and three
to AW .
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Illustration, continued

At this point, we have

X Y

Z W

AX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 49, 50, 51}
AY = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 49, 50, 51, 52}
AZ = {1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 49, 50, 51, 53, 54}
AW = {1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21, 25, 26, 27, 31, 32, 33, 37, 38, 39, 43, 44, 45, 49, 50, 51, 55, 56, 57}

Now |AX | = 27, |AY | = 28, |AZ | = 29, and |AW | = 30.

For i 6= j , |Ai ∩ Aj | = 15, and |Ai ⊓ Aj | = 3.
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Illustration, continued

X Y

Z W

current

X Y

Z W

goal

AX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 49, 50, 51}
AY = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 49, 50, 51, 52}
AZ = {1, 2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 49, 50, 51, 53, 54}
AW = {1, 2, 3, 7, 8, 9, 13, 14, 15, 19, 20, 21, 25, 26, 27, 31, 32, 33, 37, 38, 39, 43, 44, 45, 49, 50, 51, 55, 56, 57}

We have already arranged that AX → AY and AY → AX .

Here is how we arrange that AX → AZ and AZ 6→ AX .

Take the “private intersection” AX ⊓ AZ = {16, 17, 18}.
Remove 16 from AX and AZ , and return it as two fresh points
58 ∈ AX and 59 ∈ AZ .

The point is that now |AX ∩ AZ | = 14, and 14
29

< 1
2

< 14
27

.
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Illustration, continued

X Y

Z W

current

X Y

Z W

goal

Similar tricks arrange all of our other requirements.

We get

AX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 22, 23, 24, 49, 50, 51, 58, 60, 61, 62}
AY = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 49, 50, 51, 52}
AZ = {1, 2, 3, 4, 5, 6, 13, 14, 15, 17, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 49, 50, 51, 53, 54, 59}
AW = {1, 2, 3, 7, 8, 9, 13, 14, 15, 25, 26, 27, 31, 32, 33, 37, 38, 39, 43, 44, 45, 49, 50, 51, 55, 56, 57, 63, 64, 65}

This exhibits our graph G as a majority graph.
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Illustration, continued

AX = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 22, 23, 24, 49, 50, 51, 58, 60, 61, 62}
AY = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 49, 50, 51, 52}
AZ = {1, 2, 3, 4, 5, 6, 13, 14, 15, 17, 18, 25, 26, 27, 28, 29, 30, 37, 38, 39, 40, 41, 42, 49, 50, 51, 53, 54, 59}
AW = {1, 2, 3, 7, 8, 9, 13, 14, 15, 25, 26, 27, 31, 32, 33, 37, 38, 39, 43, 44, 45, 49, 50, 51, 55, 56, 57, 63, 64, 65}

Recall our set

Γ =























M(X ,Y )
M(Y ,X )
M(X ,Z )

¬M(Z ,X )
M(Y ,Z )

M(Z ,Y )
M(Y ,W )

¬M(W ,Y )
M(Z ,W )























We have built a model to see that

Γ 6|= M(W ,Z )
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Results

Theorem (Tri Lai 2013)

Every graph without one-way cycles is a majority graph.

Theorem [LM]

Here is a complete logical system for this language.

M(X ,Y )

M(X ,X )

M(X ,Y )

M(Y ,Y )

One of the infinitely many rules is

M(X ,Y ) M(Y ,Z ) M(Z ,X ) ¬M(X ,Z ) ¬M(Z ,Y )

M(Y ,X )

“There are no one-way cycles X → Y → Z → X .”
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Variation: all, some, most
but no negation

All X are X
All X are Y All Y are Z

All X are Z

Some X are Y
Some Y are X

Some X are Y
Some X are X

Some X are Y All Y are Z
Some X are Z

Can you think of any valid laws that add M(X ,Y ) on top of
All X are Y and Some X are Y ?
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Variation: all, some, most
but no negation

All X are X
All X are Y All Y are Z

All X are Z

Some X are Y
Some Y are X

Some X are Y
Some X are X

Some X are Y All Y are Z
Some X are Z

Most X are Y
Some X are Y

m1
Some X are X
Most X are X

m2
Most X are Y All Y are Z

Most X are Z
m3

Most X are Z All X are Y All Y are X
Most Y are Z

m4

All Y are X All X are Z Most Z are Y
Most X are Y

m5

X1 ⊲A,B Y1 Y1 ⊲B,A X2 · · · Xn ⊲A,B Yn Yn ⊲B,A X1

Some A are B
⊲
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The last infinite batch of rules

X1 ⊲A,B Y1 Y1 ⊲B,A X2 · · · Xn ⊲A,B Yn

Some A are B
⊲
Yn ⊲B,A X1

Examples:
Most Z are X Most Z are Y

Some X are Y
⊲

Another example: From

Most X are B ′,All A′ are A,Most Y are A′,All B ′ are B ,All X are Y

Most Y are A′′,All A′′ are A,Most X are B ′′,All B ′′ are B ,All A′′ are X

infer
Some A are B .
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What derivations look like

As an example, Some X are X ,All X are Y ⊢ Most X are Y via the
tree below:

Some X are X
Most X are X All X are Y

Most X are Y

23/25



Results

Theorem (Jörg Endrullis & LM (2013))

The logical system for this language is complete.

Theorem

Infinitely many axioms are needed in the system.

Theorem

The decision problem for the consequence relation

Γ ⊢ ϕ

is in polynomial time.
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Open question

◮ Get a such complete logic for

All X are Y Some X are Y Most X are Y

No X are Y ∃≥(X ,Y )

and sentential ∧, ∨, and ¬.

◮ Alternatively, prove that there is no such logic.

◮ Investigate the algorithmic properties of the logic.
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