John Conway, in his theory of two-persons games, constructed an ordered abelian group from the class of all games. The construction depends on the following operations: the sum \(A + B \) of two games \(A \) and \(B \), the opposite \(-A\) of a game \(A \) and the null game \(0 \). Let us denote by \(W(A) \) the set of winning strategies for the left (player), when the right (player) opens on a game \(A \). Conway’s preorder relation \(A \leq B \) means that \(W(B - A) \neq \emptyset \). We intend to construct a category whose objects are games, where a morphism \(A \to B \) is defined an element of \(W(B - A) \). We recall the notion of compact closed symmetric monoidal category, in which every object has a dual. We would like to show that the category of games is symmetric monoidal and compact. But is it really a category? How do we show that the composition law is associative? When are two (winning) strategies equivalent? I will address this last question in my afternoon talk.