Group Theory

Jan 2012 #6
Prove that if G is a nonabelian group, then $G/Z(G)$ is not cyclic.
Sol: Suppose on the contrary, $G/Z(G)$ is generated by $aZ(G)$.
Every element $g = a^kh$, $k \in \mathbb{Z}$, $h \in Z(G)$.
\[a^kh \times a^rs = a^{k+r}hs = a^r s \times a^kh \rightarrow \]

Aug 2011 #9 (Jan 2010 #5)
Prove that any group of order p^2 is an abelian group.
Sol: P-groups has non-trivial center due to class formula, then follow from the above question.

Jan 2012 #7
G is nonabelian finite group of order p^3, prove $Z(G) = [G, G]$.
Sol: Again, P-groups has non-trivial center. G is non abelian implies $\{ e \} \subset Z(G) \subset G$ and $|G, G| \neq \{ e \}$.
$G/Z(G)$ has order p or p^2. From Jan 2012 #6, $G/Z(G)$ is not cyclic, so $G/Z(G)$ is an abelian group(by Aug 2011 #9) of order p^2.
But then $Z(G) \supset [G, G]$. From the order, they are equal.

Aug 2011 #12
G is a finite group, and $M \subset G$ be a maximal subgroup.
Show that if M is normal subgroup of G, then $|G : M|$ is prime.
Sol: G/M is a group with no non-trivial proper subgroup. So it is generated by any gM with $g \notin M$.
So G/M is cyclic and the order must be prime.

Jan 2011 #1 (Aug 2010 #8)
Find the element g of order 2 in S_6 with minimal order of the centralizer $C(g) = \{ h \in G \mid hg = gh \}$.
Find the numbers of element in S_6 that commute with $g \in S_5$ where g has order 6.
Sol: g must conjugate to either $(1,2), (1,2)(3,4)$ or $(1,2)(3,4)(5,6)$.
The orbit of $(1,2)$ under conjugation is of size $C(6,2) = 15$
The orbit of $(1,2)(3,4)$ under conjugation is of size $C(6,2)C(4,2)/2 = 45$
The orbit of $(1,2)(3,4)(5,6)$ under conjugation is of size 5×3
So the centralizer are of size $6! /15.6! \div 45.6! /15$.
Hence $(1,2)(3,4)$ has minimal order 16.
A direct computation can find centralizer.
\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 3 & 4 & 5 & 6
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
a & b & c & d & e & f
\end{pmatrix}
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 1 & 3 & 4 & 5 & 6
\end{pmatrix}
= \begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 \\
a & b & c & d & e & f
\end{pmatrix}
\]
Hence a,b is either 1,2 and c,d,e,f can be any number 3-6,etc

Aug 2010 #2
Let G be a finite group and $\Phi : G \rightarrow G$ be an automorphism.
1. Show that Φ maps a conjugacy class of G into a conjugacy class of G.
2. Give an example of non-trivial G and Φ such that $\{ e \}$ is the only conjugacy class of G that maps into itself.
 Explain.
3. Show that if $G = S_5$, then g and $\Phi(g)$ must be conjugate for any $g \in G$.
Sol: $\Phi(a^{-1}ga) = \Phi(a)^{-1}\Phi(g)\Phi(a)$.
$G := C_2 \times C_2$, $\Phi((x, y)) = (y, x + y)$ and G is abelian.
The conjugacy class is of size $1^{e^2}, 10^{(1,2)^5}, 15^{(1,2)(3,4)^5}, 20^{(1,2,3)^5}, 30^{(1,2,3,4)^5}, 24^{(1,2,3,4,5)^5}, 20^{(1,2,3)(4,5)^5}$
By part 1 and the order of the element.

Jan 2010 #6
How many conjugacy classes are there in the symmetric group S_5.
Sol: 7 from above.
Jan 2010 #4
Suppose G is a group of order 60 that has 5 conjugacy classes of orders 1, 15, 20, 12, 12.
Prove that G is a simple group.
Sol: A normal subgroup N is a subgroup of G and is disjoint union of conjugacy class in G.
The numbers above can’t form a subgroup.

Aug 2010 #5
Let G be the group of rigid motions (more specifically, rotations) in \mathbb{R}^3 generated by a = a 90 degree rotation about x–axis, and b = a 90 degree rotation about y–axis.

1. How many elements does G have?
2. Show that the subgroup generated by a^2 and b^2 is a normal subgroup of G.

Sol: $a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}$, $b = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

Show that G is the set of matrix with only one nonzero entry which is 1 in each row and column and the determinant is 1. Hence order of $G = 24$.

$c := bab^{-1} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ = a 90 degree rotation about z-axis. Now it is not hard to see it is the automorphism group of a cube and hence has 24 elements.

$a^2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$, $b^2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $a^2b^2 = c^2$ so this group generate four element and is isomorphic to Klein 4 group.

It is sufficient to check $b^{-1}a^3b$ and $a^{-1}b^2a$ is in this subgroup.

$b^{-1}a^3b = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ and $a^{-1}b^2a = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$

Jan 2012 #5
Let a, b be elements of a group G. Prove that ab and ba have the same order.
Sol: $a(bab...ab) = 1$ implies $bab...ab$ is the inverse of a implies $(bab...ab)a = 1$. (Left inverse = Right inverse)

Jan 2012 #8
Determine the group of $Aut(C_4 \times C_2)$, calculating its order and identifying it with a familiar group.
Sol: Denote $G = C_4 \times C_2 = \{e, a, b, c\}$ where $c = ab$.
The automorphism on G is the permutation on $\{a, b, c\}$. So $Aut(C_4 \times C_2) = S_3$.
Or $Aut(C_4 \times C_2) = GL_2(\mathbb{F}_2)$.

Aug 2011 #11
Find the cardinality of $Hom(\mathbb{Z}/20\mathbb{Z},\mathbb{Z}/50\mathbb{Z})$.
Sol: Suppose $\phi \in Hom(\mathbb{Z}/20\mathbb{Z},\mathbb{Z}/50\mathbb{Z})$. Say $\phi(1) = n$. Then $20n = 0$, hence $5|n$.
So n can be $0, 5, 10, 15, ..., 45$. Hence $Hom(\mathbb{Z}/20\mathbb{Z},\mathbb{Z}/50\mathbb{Z}) \cong \mathbb{Z}/10\mathbb{Z}$.

Jan 2011 #3
Show that every finite group of order ≥ 3 has a non-trivial automorphism.
Sol: If G is abelian, then G is a product of cyclic group. And each such group has non-trivial automorphism.
(at least $\mathbb{Z}/n\mathbb{Z}$, $n > 2$, or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ are contain in G)
If G is not abelian, then there is $a, b \in G$ such that $ab \neq ba$. Define ϕ_a by $\phi_a(g) = a^{-1}ga$.

Jan 2010 #8
1. Show that $Hom(G,H)$ is an abelian group if H is abelian group.
2. Prove that if G is finite cyclic group, then $Hom(G,\mathbb{Q}/\mathbb{Z})$ is isomorphic to G.
3. Find an infinite abelian group G such that $\text{Hom}(G, \mathbb{Q}/\mathbb{Z})$ is not isomorphic to G.

Sol: $f_1(gh) + f_2(gh) = f_1(g) + f_1(h) + f_2(g) + f_2(h) = f_1(g) + f_2(g) + f_1(h) + f_2(h)$. So $f_1 + f_2$ is a homomorphism. And it is clear that $f_1 + f_2 = f_2 + f_1$ pointwise.

If $G = \mathbb{Z}/n\mathbb{Z}$, then $f(1) = \alpha \in \mathbb{Q}/\mathbb{Z}$. Then $n\alpha = 0$ implies $\alpha = \frac{k}{n}$, $0 \leq k < n$. Hence $\text{Hom}(G, \mathbb{Q}/\mathbb{Z})$ is finite cyclic and generated by $f(1) = \frac{1}{n}$.

Let $G = \mathbb{Z}$ and $f(1) = \alpha$. Then α can any element in \mathbb{Q}/\mathbb{Z}. And hence $\text{Hom}(G, \mathbb{Q}/\mathbb{Z}) \cong \mathbb{Q}/\mathbb{Z}$. But \mathbb{Q}/\mathbb{Z} is not cyclic.

Aug 2011 #10

Let $a \in G$. Prove that a commutes with each of its conjugates in G iff a belongs to an abelian normal subgroup of G.

Sol: (\Rightarrow) Define $N = \langle g^{-1}ag \rangle$, $g \in G$.

(\Leftarrow) Let N be the abelian normal subgroup. Then $g^{-1}ag \in N$ and hence commute with a.

Jan 2011 #2

Let G be a group and H_3 and H_5 be normal subgroups of G of index 3 and 5 respectively.

Prove that every element of $g \in G$ can be written in the form $g = h_3h_5$ with $h_3 \in H_3$ and $h_5 \in H_5$.

Sol: Let $\pi : G \rightarrow G/H_5$. Then $\pi(H_3) \not\subseteq eH_5 \Leftrightarrow H_3 \not\subseteq H_5$. Hence $\pi(H_3)$ is a nontrivial subgroup of $G/H_5 \cong \mathbb{Z}/5\mathbb{Z}$. So $\pi(H_3) = G/H_5$. So for all $g \in G$, there is $h_3 \in H_3$ s.t. $\pi(g) = \pi(h_3)$.

- Linear Algebra part 1

Aug 2011 #2

Let V be a finite dimensional real vector space of dimension n. Define an equivalence relation \sim on the set $\text{End}_\mathbb{R}(V)$ of \mathbb{R}-linear homomorphisms $V \rightarrow V$ as follows:

if $S, T \in \text{End}_\mathbb{R}(V)$ then $S \sim T$ if there are invertible maps $A, B : V \rightarrow V$ s.t. $S = BTA$.

Determine, as a function of n, the number of equivalence classes.

Sol: Any S can be reduced to row echelon form by row operation and hence by an invertible matrix A. Then by suitable column operation, then get a matrix in row reduced form and the leading one is at (i,i)-entry for i from 1 to r where r is the rank.

So $f(n) = n + 1$.

Aug 2010 #3

Let V and W be real vector spaces, and let $T : V \rightarrow W$ be a linear map. If the dimensions of V and W are 3 and 5, respectively, then for any bases B of V and B' of W, we can represent T by a 5×3 matrix $A_{T,B,B'}$. Find a set S of 5×3 matrices as small as possible such that for any $T : V \rightarrow W$ there are bases B of V and B' of W such that $A_{T,B,B'} \in S$.

Sol: Similar to last one.

Jan 2011 #5

Let $T : \mathbb{R}^4 \rightarrow \mathbb{R}^2$ be the linear transformation $T(a, b, c, d) = (a + b - c, c + d)$. Find a basis for the null space.

Sol: \[
\begin{bmatrix}
1 & 1 & -1 & 0 \\
0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
1 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{bmatrix}
\]

$(−b − d, b, −d, d) = b(−1, 1, 0, 0) + d(−1, 0, −1, 1)$.

Jan 2010 #7

Let $G = GL_2(\mathbb{F}_5)$. What is the order of G?

Sol: $(25−1)(25−5) = 480$.

Jan 2010 #3

Let A, B be $n \times n$ complex matrices such that $AB = BA$. Prove that there exists a vector $v \neq 0$ in \mathbb{C}^n which is an eigenvector for A and for B.

Sol: Let λ be an eigenvalue of Φ_A where $\Phi_A(x) := Ax$ and V_λ be the eigenspace of λ.

If $x \in V_\lambda$, then $Ax = \lambda x$ and $ABx = BAx = \lambda Bx$. So $Bx \in V_\lambda$. So $\Phi_B(V_\lambda) \subseteq V_\lambda$. Let v be an eigenvector of $\Phi_B|_{V_\lambda}$. Then v is an eigenvalue for both A and B.

Jan 2011 #4

The following matrix has four distinct real eigenvalues. Find their sum and their product.
Jan 2010 #1
Let A be the a $n \times n$ complex matrix which does not have eigenvalue -1. Show that the matrix $A + I_n$ is invertible.

Sol: Let $f(t)$ be the characteristic polynomial of A. Then $f(-1) \neq 0$. $det(A + I_n) = (-1)^n f(-1) \neq 0$.

Aug 2011 #3
Let A be the $n \times n$ matrix with zeros on the diagonal and ones everywhere else. Find the characteristic polynomial of A.

Sol: First observe that $(1, 1, 1, ..., 1)^T$ is an eigenvector corresponding to eigenvalue $n - 1$.

And $(A_n + I_n) = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$ is rank 1. So null space has dimension $n - 1$. A basis is given by $(1, -1, 0, ..., 0)^T, (1, 0, -1, ..., 0)^T, ..., (1, 0, 0, ..., -1)^T$.

Hence A_n is diagonalizable to $D_n = \begin{bmatrix} n - 1 \\ \vdots \\ -1 \\ \vdots \\ -1 \end{bmatrix}$ and therefore, the characteristic polynomial is $(t - n + 1)(t + 1)^{n-1}$.

To do it directly, let $f_n(t) = det(tI_n - A_n) = t \times f_{n-1}(t) + det \begin{bmatrix} -1 & -1 & -1 & \cdots & -1 \\ -1 & t & -1 & \cdots & -1 \\ -1 & -1 & t & \cdots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & -1 & \cdots & t \end{bmatrix} - det \begin{bmatrix} -1 & -1 & -1 & \cdots & -1 \\ -1 & -1 & -1 & \cdots & -1 \\ -1 & -1 & -1 & \cdots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t + 1 & 0 & 0 & \cdots & 0 \end{bmatrix}$

\[\therefore f_n(t) = t \times f_{n-1}(t) + (n-1)det \begin{bmatrix} -1 & -1 & -1 & \cdots & -1 \\ -1 & t & -1 & \cdots & -1 \\ -1 & -1 & t & \cdots & -1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -1 & -1 & -1 & \cdots & t \end{bmatrix} = t \times f_{n-1}(t) + (n-1)det \begin{bmatrix} -1 & -1 & -1 & \cdots & -1 \\ 0 & t+1 & 0 & \cdots & 0 \\ 0 & 0 & t+1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & t+1 \end{bmatrix} \]

Therefore, $f_n(t) = t \times f_{n-1}(t) - (n-1)(t+1)^{n-2}$.

It can be check that $f_2 = (t-1)(t+1)$, so

\[
\begin{align*}
f_2(t) &= t(t-1)(t+1) - 2(t+1) = (t-2)(t+1)^2 \\
f_2(t) &= t(t-2)(t+1)^2 - 3(t+1)^2 = (t-3)(t+1)^3.
\end{align*}
\]

Using induction, we can see $f_n(t) = (t - n + 1)(t + 1)^{n-1}$.

- Ring Theory
Aug 2011 #6
Let P be a prime ideal in a commutative ring R with 1, and let $f(x) \in R[x]$ be a polynomial of positive degree. Prove that following statement: if all but the leading coefficient of $f(x)$ are in P and $f(x) = g(x)h(x)$, for some non-constant polynomials $g(x), h(x) \in R[x]$, then the constant term $f(0)$ is in P^2.

Sol: $f = \tilde{a}_n x^n = \tilde{g}h$. Hence all but the leading coefficient of \tilde{g} are 0 and all but the leading coefficient of \tilde{h} are 0 as R/P is an integral domain. Hence $g(0), h(0) \in P$ and hence $f(0) = g(0)h(0) \in P^2$.

Jan 2011 #7
Prove that in a commutative ring with a finite number of elements, prime ideals are maximal.
Sol: We can show that an integral domain with finite element is a field. Hence the result follows.

Jan 2011 #9
1. Give an example of a ring R and a unit $r \in R$ with $r \neq 1$.
2. Give an example of a ring R and a nilpotent element $r \in R$ with $r \neq 0$.
3. Show that for any ring R and for any element $r \in R$, that r is a nilpotent element of R iff $1 - rx$ is a unit in the polynomial ring $R[x]$.

Sol: \mathbb{Q}, 2.
$\mathbb{Z}/4\mathbb{Z}$, 2.
If $r^k = 0$, then $(1 - rx)(1 + rx + r^2x^2 + ... + r^{k-1}x^{k-1}) = 1 - r^kx^k = 1$. If $(1 - rx)(a_0 + a_1x + ... + a_nx^n) = 1$, then $a_0 = 1, a_1 = r, a_2 = r^2, ..., a_n = r^n$. Hence $1 - r^{n+1}x^{r+1} = 1$ implies $r^{n+1} = 0$.

Another way to see it is by:
For all prime ideal P, $1 - \tilde{r}x$ is a unit in $R/P[x]$. But R/P is an integral domain. So $\tilde{r} = 0$. Hence $r \in \cap P = \sqrt{0}$.

Aug 2010 #6
Let R be a ring with 1. Define $a \in R$ to be periodic of period k if $a, a^2, a^3, ..., a^k$ are all different, but $a^{k+1} = a$.
1. In $R = \mathbb{Z}/76\mathbb{Z}$, find an element $a \neq 0, 1$ of period 1.
2. In the same ring $R = \mathbb{Z}/76\mathbb{Z}$, find an element that is not periodic.
3. In $R = \mathbb{Z}/76\mathbb{Z}$, list the possible periods and the elements of each period.

Sol: $S = \mathbb{Z}/4\mathbb{Z}$, $T = \mathbb{Z}/19\mathbb{Z}$. So $R \cong S \times T$.
Notice that r is periodic iff s, t are periodic where $\phi(r) = (s, t)$.
0, 1 $\in S$ are elements of period 1 and 0, 1 $\in T$ are elements of period 1.
So 0, 1, 57, 20 are the elements of period 1 of R.
Every element in T is periodic and 0, 1, 3 are periodic element in S.
So the element that are not periodic are: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74.

<table>
<thead>
<tr>
<th>element in S</th>
<th>period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>element in S</th>
<th>period</th>
<th>element in S</th>
<th>period</th>
<th>element in S</th>
<th>period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1</td>
<td>1</td>
<td>14</td>
<td>18</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>18</td>
<td>2</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>17</td>
<td>9</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>15</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>18</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
<td>18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So by $r = \phi^{-1}(s, t) = 20t - 19s$.
Jan 2010 #12
Determine the following ideals in \(\mathbb{Z} \) by giving generators:
\((2) + (3), (4) + (6), (2) \cap (3), (4) \cap (6)\)
Sol: \(1, 2, 6, 12\).

Jan 2012 #11
Prove that the rings \(\mathbb{F}_{16}, \mathbb{F}_4 \times \mathbb{F}_4 \), and \(\mathbb{Z}/16\mathbb{Z} \) are pairwise non-isomorphic.
Sol: \(\mathbb{F}_{16} \) has no zero divisor.
\(\mathbb{F}_4 \times \mathbb{F}_4 \) has no element of order >4.
Can use the number of unit element and the number of ideal.

Aug 2010 #7
In this problem, \(R \) is a finite commutative ring with 1. Let \(p(x) \in R[x] \), the ring of polynomials over \(R \).

1. Show that \(a \in R \) is a root of \(p(x) \) iff \(p(x) \) can be written as \(p(x) = (x - a)g(x) \) with \(g(x) \in R[x] \) of degree one less than the degree of \(g(x) \).

2. Prove or give a counter example: A polynomial of \(p(x) \in R[x] \) of degree \(n \) can have at most \(n \) distinct roots in \(R \).

Sol: Clear for the first part by DA.
\(R = 6\mathbb{Z} / 6\mathbb{Z}, f(x) = (x - 2)(x - 3) = x^2 - 5x = x(x - 5) \).

Jan 2012 #12 (Jan 2010 #9)
Find all the maximal ideals in \(\mathbb{R}[x] \). (Describe the prime ideals in \(\mathbb{C}[x] \))
Sol: \(\mathbb{R}[x] \) is a PID, and so any prime ideal is generated by an irreducible polynomial. But the irreducible polynomial is either \(x - a \) or \(x^2 - bx + c \) with \(b^2 < 4c \) as \(\mathbb{C} \) is algebraically closed.

Jan 2010 #13
Let \(f(x) \in \mathbb{C}[x] \) be a polynomial of degree \(n \) such that \(f \) and \(f' \) (the derivative of \(f \)) have no common roots. Show that the quotient ring \(\mathbb{C}[x]/(f) \) is isomorphic to \(\mathbb{C} \times \mathbb{C} \times \ldots \times \mathbb{C}(n \text{ times}) \).
Sol: \(f \) and \(f' \) have no common roots implies that \(f \) has simple root. So \(f(x) = a \prod_{1 \leq i \leq n} (x - c_i) \) where \(c_i \) are distinct.
But then the ideals \((x - c_1), (x - c_2), \ldots, (x - c_n)\) are pairwise comaximal, and hence \(\mathbb{C}[x]/(f) = \mathbb{C}[x]/(x - c_1) \times \mathbb{C}[x]/(x - c_2) \times \ldots \times \mathbb{C}[x]/(x - c_n) = \prod_{1 \leq i \leq n} \mathbb{C}[x]/(x - c_i) = \prod_{1 \leq i \leq n} \mathbb{C} \).

Aug 2011 #5
Let \(R = \mathbb{K}[x, y, z]/(x^2 - yz) \), where \(\mathbb{K} \) is a field. Show that \(R \) is an integral domain, but not a unique factorization domain.
Sol: First prove \((x^2 - yz) \) is a prime ideal. Since \(\mathbb{K}[x, y, z] \) is an UFD, it suffices to show \(x^2 - yz \) is irreducible.
Suppose \(f, g \in \mathbb{K}[x, y, z] \) s.t. \(fg = x^2 - yz \). Then \(\deg(f) + \deg(g) = 2 \) and hence \(\deg(f) = 0, 1, 2 \).
We need to show \(\deg(f) \neq 1 \).
Otherwise, \(f = ax + by + cz \) and \(g = px + qy + rz \) (no constant term).
\(ap = 1 \), so we may assume, \(a = p = 1 \). Then \(b + q = 0, c + r = 0, bq = 0, cr = 0 \).
Contradiction as \(br + cq = 1 \).
Let \(\bar{x} = \bar{y}z \) be an element in \(R \). We will show this \(\bar{x} \), \(\bar{y} \), \(\bar{z} \) are irreducible but \(\bar{x} \sim \bar{y} \) or \(\bar{y} \sim \bar{z} \).

<table>
<thead>
<tr>
<th>(S \times T)</th>
<th>(R)</th>
<th>period</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0,0),(0,1),(1,0),(1,1))</td>
<td>0,20,57,1</td>
<td>1</td>
</tr>
<tr>
<td>((0,1),(1,1),(3,1),(3,3))</td>
<td>56,37,75,19,39</td>
<td>2</td>
</tr>
<tr>
<td>((3,7),(3,11))</td>
<td>7,11</td>
<td>6</td>
</tr>
<tr>
<td>((0,8),(1,8),(3,8),(0,12),(1,12),(3,12))</td>
<td>8,65,27,12,69,31</td>
<td>6</td>
</tr>
<tr>
<td>((0,4),(0,16),(0,9),(0,17),(0,6),(0,5))</td>
<td>4,16,28,36,44,24</td>
<td>9</td>
</tr>
<tr>
<td>((1,4),(1,16),(1,9),(1,17),(1,6),(1,5))</td>
<td>61,73,9,17,25,5</td>
<td>9</td>
</tr>
<tr>
<td>((3,4),(3,16),(3,9),(3,17),(3,6),(3,5))</td>
<td>23,35,47,55,63,43</td>
<td>18</td>
</tr>
<tr>
<td>((0,2),(0,13),(0,14),(0,15),(0,3),(0,10))</td>
<td>40,32,52,72,60,48</td>
<td>18</td>
</tr>
<tr>
<td>((1,2),(1,13),(1,14),(1,15),(1,3),(1,10))</td>
<td>21,13,33,53,41,29</td>
<td>18</td>
</tr>
<tr>
<td>((3,2),(3,13),(3,14),(3,15),(3,3),(3,10))</td>
<td>39,51,71,13,5,67</td>
<td>18</td>
</tr>
</tbody>
</table>
Suppose $\bar{x} = \bar{f}g$. Choose representative $f, g \in K[x, y, z]$ such that f and g has minimal degree.

Say $f = f_0 + f_1 + \ldots + f_r$ and $g = g_0 + \ldots + g_s$. Then $x^2 - yz|fg - x$. If $r + s > 1$, then $x^2 - yz|fg$ and hence contradict to the minimality of r and s.

So $r + s = 1$ and hence one of f and g must be constant. So this prove that \bar{x} is irreducible.

Similarly for \bar{y} and \bar{z}.

And finally, it is not hard to see that \bar{x} is not associated to \bar{y}.

Aug 2010 #12

For which values of n in \mathbb{Z} does the ring $\mathbb{Z}[x]/(x^3 + nx + 3)$ have no zero divisors?

Sol: It is the same to find the values of n s.t. $x^3 + nx + 3$ is irreducible over \mathbb{Z} as $\mathbb{Z}[x]$ is an UFD. (ref. Michael Artin book, on the section of Gauss lemma.)

Since $x^3 + nx + 3$ is primitive polynomial and then it is reducible iff it has a root in \mathbb{Q} (or $ax + b$ is a factor of $x^3 + nx + 3$ for some relative prime integers a, b).

Then $n = 1$ and $n = 3$ implies that the root is either ± 1 or ± 3. Hence $1 + n + 3 = 0$ or $-1 - n + 3 = 0$ or $27 + 3n + 3 = 0$.

Hence $n = -4, 2, -10, -8$ are the value that $x^3 + nx + 3$ is reducible and hence the value that $\mathbb{Z}[x]/(x^3 + nx + 3)$ have zero divisors.

Aug 2010 #11

Let M be the ring of 3×3 matrices with integer entries. Find all maximal two-sided ideals of M.

Sol: If $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \in M$, then $\begin{bmatrix} a & b & c \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} d & e & f \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} g & h & i \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in M$ and hence $\begin{bmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \ldots \in M$. So $\begin{bmatrix} gcd(a, b, c, \ldots, i) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \in M$ and hence $M = kM_3 \times 3(\mathbb{Z})$ where k is gcd of all entries of all elements in M.

So M is maximal iff k is a prime number.

- Linear Algebra part 2

Jan 2012 #3

Find the eigenvalues and a basis for the eigenspace of the matrix.

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Sol: Since the matrix is in triangular form, so the eigenvalues are the diagonal entries.

For e.v. $= 1$, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is an eigenvector.

For e.v. $= 0$, $\begin{bmatrix} 2 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 3 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ forms a basis for the eigenspace.

Jan 2010 #2 (Jan 2012 #1)

Find invertible matrix P s.t. $P^{-1}AP$ is diagonal where

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

Sol: For $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, it may be possible to guess $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & -i & -1 \\ -1 & 1 & -i \end{bmatrix}$, $\begin{bmatrix} 1 & i & -1 \\ -i & 1 & -1 \end{bmatrix}$ are the eigenvector for eigenvalue $1, -1, i, -i$ respectively.

In general, find the characteristic polynomial of $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$ first.
\[\text{char}_A(t) = \det \begin{pmatrix} t & 0 & 0 & -4 \\ -1 & t & 0 & 0 \\ 0 & -2 & t & 0 \\ 0 & 0 & -3 & t \end{pmatrix} = t \times \det \begin{pmatrix} t & 0 \\ -2 & t \end{pmatrix} + 4\det \begin{pmatrix} -1 & t \\ -2 & t \end{pmatrix} \]

\[= t^4 - 24 = (t - a)(t + a)(t - ia)(t + ia) \text{ where } a = \sqrt{24}. \]

Put \(w = 1 \) (why?), then \(z = a/3, y = a^2/6, x = a^3/6. \)

Put \(w = 1, \) then \(z = -a/3, y = a^2/6, x = -a^3/6. \)

Put \(w = 1, \) then \(z = ia/3, y = -a^2/6, x = -ia^3/6. \)

Put \(w = 1, \) then \(z = -ia/3, y = -a^2/6, x = ia^3/6. \)

There \(\begin{pmatrix} a^3/6 \\ a^2/6 \\ a^3/6 \end{pmatrix}, \begin{pmatrix} -a^3/6 \\ -a^2/6 \\ -ia^3/6 \end{pmatrix}, \begin{pmatrix} ia^3/6 \\ ia/3 \\ 1 \end{pmatrix}, \begin{pmatrix} ia^3/6 \\ ia/3 \\ 1 \end{pmatrix} \) are the eigenvector for the eigenvalue \(a, -a, ia, -ia \) respectively.

Jan 2012 #2

Find the matrix \(A^{2001} \) for \(A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}. \)

Sol: From the previous example, characteristic polynomial is \(t^4 - 1. \)

So we have \(A^4 = I \) which can be checked directly.

So \(A^{2001} = (A^4)^{500}A = A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}. \)

Aug 2011 #4

Find the Jordan canonical form of \(\begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4 \end{pmatrix}. \)

Sol: It is clear that the eigenvalues are 1,4,4.

Denote \(A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 4 \end{pmatrix}. \)

\(A - I = \begin{pmatrix} 0 & 2 & 3 \\ 0 & 3 & 5 \\ 0 & 0 & 3 \end{pmatrix}, \) so \(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \) is an eigenvector.

\(A - 4I = \begin{pmatrix} -3 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{pmatrix}, \) so \(\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix} \) is an eigenvector.
\[(A - 4I)^2 = \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & 2 & 3 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 9 & -6 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \]
so \[\begin{bmatrix} 0 \\ 1 \\ 6 \end{bmatrix}\] is an generalized eigenvector.

So the Jordan canonical form is \[\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 1 \\ 0 & 0 & 4 \end{bmatrix}\].

Jan 2012 #4

Find the matrix \(e^C := I + C + \frac{C^2}{2} + \ldots\) where
\[C = \begin{bmatrix} 1 \\ 4 \\ 1 \\ 1 \end{bmatrix}\]

Sol: \(t^2 - 2t - 3 = (t-3)(t+1)\) is the characteristic polynomial.
\[C - 3I = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix}, \text{ so } \begin{bmatrix} 2 \\ 1 \end{bmatrix}\] is an eigenvector.
\[C + I = \begin{bmatrix} 2 \\ 4 \\ 1 \\ 2 \end{bmatrix}, \text{ so } \begin{bmatrix} -2 \\ 1 \end{bmatrix}\] is an eigenvector.

So \[C = \begin{bmatrix} 2 & -2 \\ 1 & 1 \\ 3 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -\frac{1}{4} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{4} \end{bmatrix}\].
Hence \[e^C = \begin{bmatrix} 2 & -2 \\ 1 & 1 \\ 0 & e^{-1} \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \\ e^{3} & -e^{-1} \end{bmatrix} \begin{bmatrix} -\frac{1}{4} & \frac{1}{2} \\ \frac{1}{2} & \frac{3}{4} \end{bmatrix} = \begin{bmatrix} e^3 & e^{-1} \\ e^3 & e^{-1} \end{bmatrix} \begin{bmatrix} \frac{e^3 + e^{-1}}{2} \\ \frac{e^3 - e^{-1}}{2} \end{bmatrix}\]

Aug 2010 #9

Let \(A\) be a \(5 \times 5\) real matrix of rank 2 having \(\lambda = -i\) as one of its eigenvalues. Show that \(A^3 = -A\) and that \(A\) is diagonalizable.

Sol: Since \(A\) is real, so \(\bar{\lambda} = i\) is also an eigenvalue. \(A\) has rank 2 implies that null space has dimension 3. or equivalently, there are 3 independent vector for the eigenvalue 0.

Together with the eigenvector of \(i, -i\), there are a basis consists of eigenvectors of \(A\). So \(A\) is diagonalizable.

And the corresponding diagonal matrix is \[\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}\].

We also have the minimal polynomial of \(A\) is \(t - (t + i)(t - i) = t^3 + t\). Hence \(A^3 + A = 0\) or \(A^3 = -A\).

Aug 2011 #1

Let \(A\) be a matrix in \(GL_n(C)\). Show that if \(A\) has finite order(i.e. \(A^k\) is the identity matrix for some \(k \geq 1\), then \(A\) is diagonalizable.

Sol: Suppose \(A^k = I\), so \(t^k - 1\) is a multiple of the minimal polynomial.
Notice that \(t^k - 1\) has simple roots: \(\gcd(t^k - 1, kt^{k-1}) = 1\) or \(t^k - 1 = \prod(t - e^{2\pi i/k})\).
So we must have that the minimal polynomial has simple roots.
So \(A\) is diagonalizable.

Jan 2011 #6

A \(5 \times 5\) matrix \(A\) satisfies the equation \((A - 2I)^3(A + 2I)^2 = 0\). Assume that there are at least two linearly independent vectors \(v\) satisfy \(Av = 2v\).

What are the possibilities for the Jordan canonical form?

Sol: \[\begin{bmatrix} 2 & 1 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}\]
Jan 2011 #10

Let $M_n(\mathbb{C})$ denote the vector space over \mathbb{C} of all $n \times n$ complex matrices. Prove that if M is a complex $n \times n$ matrix, then $C(M) = \{A \in M_n(\mathbb{C}) | AM = MA\}$ is a subspace of $M_n(\mathbb{C})$ if dimension at least n.

SOL: It is easy to check $C(M)$ is a complex vector space.

Suppose $\mathbb{C}^n = V_1 \oplus V_2 \oplus \ldots \oplus V_k$, s.t. $\Phi_M|_{V_i}$ has Jordan canonical form

\[
\begin{bmatrix}
 a_i & 1 & & \\
 & a_i & 1 & \\
 & & \ddots & \ddots \\
 & & & a_i
\end{bmatrix}
\]

where a_i may not be distinct.

So it is easy to see there are $n_i = \text{dim}(V_i)$ transformation on V_i that commute with $\Phi_M|_{V_i}$ and are independent.

Namely,

\[
\begin{bmatrix}
 1 & & & \\
 & 1 & & \\
 & & \ddots & \\
 & & & 1
\end{bmatrix}
\]

All this can be extend to a transformation of \mathbb{C}^n which is trivial on V_j for $j \neq i$ and is one of the

\[
\begin{bmatrix}
 1 & & & \\
 & 1 & & \\
 & & \ddots & \\
 & & & 1
\end{bmatrix}
\]

Then we see that we at least $n_1 + n_2 + \ldots + n_k = \text{dim}(V_1) + \text{dim}(V_2) + \ldots + \text{dim}(V_k) = n$ independent transformation.

\[\begin{bmatrix} 2 & 2 \\ 2 & -2 & 1 \\ -2 & 2 & -2 & 2 \\ 2 & -2 & 1 & -2 \\ -2 & 2 & -2 & -2 \end{bmatrix} \]

Jan 2012 #9

Find all irreducible polynomials of degree ≤ 4 in $\mathbb{F}_2[x]$.

SOL: It is easy to find irreducible polynomial of degree 1,2,3.

Namely, $x, x-1$ are the linear polynomials.

And $x^2 + ax + b$ is irreducible, then $1 + a + b = 1$ and $b = 1$. So $x^2 + x + 1$.

For degree 4, except that 0,1 are not roots and also it is not product of quadratic. (hence $(x^2 + x + 1)(x^2 + x + 1) = x^4 + x^2 + 1$)

For degree 4, except that 0,1 are not roots and also it is not product of quadratic. (hence $(x^2 + x + 1)(x^2 + x + 1) = x^4 + x^2 + 1$)

\[x^4 + x^3 + x^2 + x + 1, x^4 + x^3 + 1, x^4 + x + 1, \]

Jan 2012 #10

Find the set of polynomials in $\mathbb{F}_2[x]$ which are the minimal polynomials of elements in \mathbb{F}_{16}.

SOL: degree 1,2,4: $x, x-1, x^2 + x + 1, x^4 + x^3 + x^2 + x + 1, x^4 + x^3 + 1, x^4 + x + 1$.

It can be check that the product of these polynomial is $x^{16} - x$.

Aug 2010 #1

Find all irreducible monic quadratic polynomials in $\mathbb{F}_2[x]$.

SOL: $x^2 + ax + b, b \neq 0, 1 + a + b \neq 0, 1 - a + b \neq 0$.

\[a = 0, b = 1, x^2 + 1 \]

\[a = 1, b = -1, x^2 + x - 1 \]

\[\begin{bmatrix} a & b \\ c & d \end{bmatrix} \]

ALGEBRAIC NUMBER THEORY
\[a = -1, b = -1, \ x^2 - x - 1 \]

Jan 2010 #11

1. Prove that the polynomial \(x^2 + x + 1 \) is irreducible over the field \(\mathbb{F}_2 \) with two elements.

2. Factor \(x^9 - x \) into irreducible polynomials in \(\mathbb{F}_3[x] \), where \(\mathbb{F}_3 \) is the field with three elements.

Sol: follows from above.

Jan 2011 #8

Let \(\mathbb{F}_4 \) be the finite field with 4 elements. Express \(\mathbb{F}_4[x]/(x^4 + x^3 + x^2 + 1) \) as a product of fields. Prove your result.

Sol: Is \(x^4 + x^3 + x^2 + 1 \) irreducible?

First we can try the elements in \(\mathbb{F}_4: 0, 1, h, 1 + h = h^2 \)

1 is a root. So \(x^4 + x^3 + x^2 + 1 = (x + 1)(x^3 + x + 1) \).

Since \(x^3 + x + 1 \) has no roots, it is irreducible.

The ideals generated by \(x + 1 \) and \(x^3 + x + 1 \) are comaximal as these two polynomials are relative prime in PID, \(\mathbb{F}_4[x] \).

So by CRT, \(\mathbb{F}_4[x]/(x^4 + x^3 + x^2 + 1) \simeq \mathbb{F}_4[x]/(x + 1) \times \mathbb{F}_4[x]/(x^3 + x + 1) \simeq \mathbb{F}_4 \times \mathbb{F}_{64} \)

Aug 2011 #7

Let \(p \) be a prime number and denote by \(\mathbb{F}_p \) the field with \(p \) elements. For a positive integer \(n \), let \(\mathbb{F}_p^n \) be the splitting field of \(x^{p^n} - x \in \mathbb{F}_p[x] \). Prove that the following are equivalent:

1. \(k|n \)
2. \((p^k - 1)|(p^n - 1) \)
3. \(\mathbb{F}_{p^k} \subset \mathbb{F}_{p^n} \)

Sol: (1\(\Rightarrow\)2), if \(n = kr \), then \(p^n - 1 = (p^k - 1)(p^{r-1} + p^{r-2} + \ldots + 1) \)

(2\(\Rightarrow\)3), if \((p^k - 1)|(p^n - 1) \), then \(x^{p^n - 1} - 1 \) are comaximal as these two polynomials are relative prime in PID, \(\mathbb{F}_4[x] \).

(3\(\Rightarrow\)1) If \(\mathbb{F}_{p^k} \subset \mathbb{F}_{p^n} \) then \(\mathbb{F}_{p^n} \) is a \(\mathbb{F}_{p^k} \) vector space \(\simeq (\mathbb{F}_{p^k})^n \). Then by comparing numbers of elements, we have \(p^n = (p^k)^r \) and hence \(n = kr \).

Aug 2010 #4

Is it possible to find a field \(F \) with at most 100 elements so that \(F \) has exactly five different proper subfields? If so, find all such fields. If not, prove that no such field \(F \) exists.

Sol: Finite field has prime power and so the possible power are:

\(81 = 2^4, 27, 9, 3, 64 = 2^6, 32, 16, 8, 4, 2, 49, 7, 25, 5, \) and some other primes < 100. From the previous problem, we see that no such field exist.

Aug 2011 #8

1. Show that \(x^3 - 2 \) and \(x^5 - 2 \) are irreducible over \(\mathbb{Q} \).

2. How many field homomorphism are there from \(\mathbb{Q}[\sqrt{2}, \sqrt{3}] \) to \(\mathbb{C} \)?

3. Prove that the degree of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{Q} \) is 15.

Sol: They are Eisenstein polynomials.

There are 15 homomorphisms.

\(\sqrt{2} \mapsto e^{2k\pi i/3} \sqrt{2}, \sqrt{3} \mapsto e^{2k\pi i/5} \sqrt{3} \)

Since 5, 3 are relative prime, \(x^3 - 2 \) remains irreducible over \(\mathbb{Q}[e^{2\pi i/5} \sqrt{2}] \), and hence there are 15 maps

Counter example, \(x^2 + 1, x^4 + 1 \).

Part 3, need to find the minimal polynomial \(f(t) \) over \(\mathbb{Q} \) (either 1, 3, 5, 15)

Conjugates of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{Q} \) is the roots of the minimal polynomials and at the same time the image of \(\sqrt{2} + \sqrt{3} \) under the any field homomorphism from \(\mathbb{Q}[\sqrt{2} + \sqrt{3}] \) to \(\mathbb{C} \).

To conclude degree of \(f(t) \) is 15, we need to show that \(e^{2k\pi i/3} \sqrt{2} + e^{2k\pi i/5} \sqrt{3} \) are all distinct.
Suppose \(e^{2k\pi i/3} \sqrt[3]{2} + e^{2l\pi i/5} \sqrt[5]{2} = e^{2k\pi i/3} \sqrt[3]{2} + e^{2l\pi i/5} \sqrt[5]{2} \).

Then \(\frac{\sqrt[3]{2}}{\sqrt[5]{2}} = \frac{e^{2k\pi i/3} - e^{2l\pi i/5}}{e^{2k\pi i/3} - e^{2l\pi i/5}} \), but the RHS is in a field of degree 15 over \(\mathbb{Q} \) and LHS is in a field of degree 8 or 4 over \(\mathbb{Q} \). Hence it should be contained in \(\mathbb{Q} \). But this is a contradiction as RHS is a generator of \(\mathbb{Q}[\sqrt[3]{2} + \sqrt[5]{2}] \).

Hence all the \(e^{2k\pi i/3} \sqrt[3]{2} + e^{2l\pi i/5} \sqrt[5]{2} \) are distinct and hence \(\sqrt[3]{2} + \sqrt[5]{2} \) has 15 conjugates.

Jan 2010 #10

Find the degree of the minimal polynomial of \(\alpha = \sqrt[3]{2} + \sqrt[5]{2} \) over \(\mathbb{Q} \).

Sol:

Method 1: Follow the idea of last problem, check \(\pm \sqrt[3]{2} + e^{2k\pi i/3} \sqrt[5]{2} \).

\(2\sqrt[3]{2} = (e^{2k\pi i/3} - e^{2l\pi i/5}) \sqrt[5]{2} \) can’t be true, so all six conjugate are different.

Method 2: It is clear then \(\mathbb{Q}[\sqrt[3]{2}, \sqrt[5]{2}] : \mathbb{Q} = 6 \) as \(\mathbb{Q}[\sqrt[3]{2}] \) and \(\mathbb{Q}[\sqrt[5]{2}] \) are subfields of degree 2,3 over \(\mathbb{Q} \).

Claim: \(\mathbb{Q}[\sqrt[3]{2}] \subset \mathbb{Q}[\sqrt[3]{2} + \sqrt[5]{2}] \).

Suppose \(\alpha = \sqrt[3]{2} + \sqrt[5]{2} \) is irreducible and hence does not have common root and hence \(\alpha \) can not be a root for both polynomial.

Hence \(\mathbb{Q}[\sqrt[3]{2}] \subset \mathbb{Q}[\sqrt[3]{2} + \sqrt[5]{2}] \).

Then \(\alpha - \sqrt[3]{2} = \sqrt[5]{2} \in \mathbb{Q}[\sqrt[3]{2} + \sqrt[5]{2}] \) implies that \(\mathbb{Q}[\sqrt[3]{2} + \sqrt[5]{2}] = \mathbb{Q}[\sqrt[3]{2}, \sqrt[5]{2}] \) and so the extension is of degree 6.

Method 3: Let \(\alpha = \sqrt[3]{2}, b = \sqrt[5]{2} \). Then \(1, a, ab, ab^2, ab^3 \) are basis of \(\mathbb{Q}[a, b] \)

\((a + b)^3 = 2 + 2ab + b^2, (a + b)^5 = 4a + 2ab + 2ab^2 + 6a + 15ab + 3b^2 \) are Eisenstein, so they are irreducible and hence they does not have common root and hence \(\alpha \) can not be a root for both polynomial.

Hence \(\mathbb{Q}[\sqrt[3]{2}] \subset \mathbb{Q}[\sqrt[3]{2} + \sqrt[5]{2}] \).

Remark: \((x - \sqrt[3]{2})^3 = 3 \) hence \(x^3 - 3\sqrt[3]{2}x^2 + 6x - 2\sqrt[3]{2} - 3 = 0 \).

Hence \(x^3 - 6x^2 + 6x + 9 = 18x^3 + 24x^2 + 8 \)
\(x^6 - 6x^4 - 6x^3 + 12x^2 - 36x + 1 = 0 \) is minimal polynomial of \(\alpha \).

Aug 2010 #10

1. Give an example of an irreducible monic polynomial of degree 4 in \(\mathbb{Z}[x] \) that is reducible in the field \(\mathbb{Q}[\sqrt{2}] \).

Explain why your example has the stated property.

2. Show that there are no irreducible monic polynomial of degree 5 in \(\mathbb{Z}[x] \) that is reducible in the field \(\mathbb{Q}[\sqrt{2}] \).

Sol: \(x^4 - 2 = (x^2 - \sqrt{2})(x^2 + \sqrt{2}) \) Eisenstein polynomial.

Suppose \(f(x) = g(x)h(x) \) where \(g(x) \) is monic irreducible over \(\mathbb{Q}[\sqrt{2}] \).

Since \(f \) is irreducible over \(\mathbb{Z} \) (hence irreducible over \(\mathbb{Q} \)), so \(g(x) \) has some of the coefficient of the form \(a + b\sqrt{2} \) with \(b \neq 0 \).

Let \(\sigma \) be the automorphism of \(\mathbb{Q}[\sqrt{2}] \) that sends \(\sqrt{2} \) to \(-\sqrt{2} \) and preserve \(\mathbb{Q} \). Then \(f = \sigma(f) = \sigma(g)\sigma(h) \).

It is clear that \(g \) and \(\sigma(g) \) are relative prime in \(\mathbb{Q}[\sqrt{2}][x] \) as they are irreducible and not different but a constant.

So \(g \times \sigma(g)f \). But it is easy to check that \(g \times \sigma(g) \) is in \(\mathbb{Q}[x] \) and of even degree. This implies that \(f \) is reducible over \(\mathbb{Q} \).

Jan 2012 #13

Let \(R = \mathbb{Z}[i] \) and \(I \subset R \) be an ideal. If \(R/I \) has 4 elements what are the possibilities for \(I \) and \(R/I \).

Sol: Let \(J = I \cap \mathbb{Z} \). Then \(\mathbb{Z}/J \hookrightarrow R/I \).

Since \(R/I \) has 4 element, then \(\mathbb{Z}/J \) can have 2,3,4 elements.

Case "3", it is not possible as \(\mathbb{Z}/3\mathbb{Z} \) is a field and hence \(R/I \) is \(\mathbb{Z}/3\mathbb{Z}\)-vector space and hence \(|R/I| \) is a power of 3.

Case "4", then \(\mathbb{Z}/J \cong \mathbb{Z}/4\mathbb{Z} \). So \(J = 4\mathbb{Z} \subset I \).

So \(\mathbb{Z}/J \hookrightarrow R/4R \hookrightarrow \mathbb{Z}/4\mathbb{Z} \).

Now \(R/4R = \mathbb{Z}/4\mathbb{Z} + i\mathbb{Z}/4\mathbb{Z} \)

We will see there are no ideal of 4 elements that does not contain 1,2,3.
So the ideal \(I/4R \) which does not contain 1,2,3 can only have element 0, \(2 + 2i \), but then \(R/I = (R/4R)/(I/4R) \) has 8 elements.

Therefore, we conclude that \(J = 4\mathbb{Z} \) is not possible.

Case “2”, then \(J = 2\mathbb{Z} \) and hence \(2 \in I \)

So \(R/2R \to R/I \). But \(R/2R = \mathbb{Z}/2\mathbb{Z} + i\mathbb{Z}/2\mathbb{Z} \) has 4 elements. So we can conclude \(I = 2\mathbb{Z} \) and \(R/I = (\mathbb{Z}/2\mathbb{Z})[i] \).