The Birth of Hadron Duality

D. Horn

School of Physics and Astronomy
Tel Aviv University
Tel Aviv, 69978, Israel.

Abstract
Setting the background for the dominant ideas in strong interaction of the early 1960s, we outline the major concepts of the S-matrix theory. An independent theoretical development was the emergence of hadron duality in 1967, leading to a realization of the Bootstrap idea by relating hadron resonances (in the s-channel) with Regge pole trajectories (in t- and u-channels).

Introduction
The theoretical framework was based on fundamental notions and principles which can be derived from Quantum Field Theory (QFT). Particle interactions were divided into four categories: strong, electromagnetic, weak and gravitational interactions. It seemed clear that, given the strength of the strong interactions, and lacking any analog of the electromagnetic fine structure constant α, there existed no hope of formulating a fundamental field theory of strong interactions.

Studying strong interactions one tried to get the utmost out of basic principles, like analyticity and unitarity of the S-matrix, and PCT symmetry principles, all of which did have their origin in QFT. Other than that, one tried to come up with principles that seemed to fit the observed experimental
phenomena. I refer to this period as the bootstrap era, whose basic leading ideas will be described in short in the next paragraph.

The Bootstrap Era

S-matrix models of two-to-two particle-scattering were described in terms of the s, t, u Mandelstam variables [Mandelstam 1958] s=(p_1+p_2)^2=(p_3+p_4)^2, t=(p_1-p_3)^2=(p_2-p_4)^2, and u=(p_1-p_4)^2=(p_3-p_2)^2, obeying the over-all constraint s+t+u=\sum_i m_i^2. The physical region for the process 1+2->3+4 was characterized by positive s and negative t. Physical regions in the crossed channels described processes involving the anti-particles, according to conventional associations in Feynman diagrams. This is exemplified in Fig. 1, which is taken from Mandelstam’s paper, describing πN scattering.

Analyticity of the S-matrix implied the appearance of poles below the scattering threshold of the s-channel, and cuts above the threshold. The same types of structures appear in physical regions of the S-matrix in the t-channel and in the u-channel, where t or u obtain positive values. Analyticity was expressed in terms of dispersion relations, relating real and imaginary parts of the scattering amplitude to each other. These analytic structures, whose analogs can be defined for general m to n particle scattering amplitudes, were further supplemented by unitarity constraints. The simplest of these relationships is the optical theorem, relating the imaginary part of the elastic scattering amplitude a+b->a+b to the total cross-section \sigma_{1}(ab). The rich set of analytic and unitarity constraints has led Chew and Frautschi [1961] to propose the Nuclear Bootstrap idea, stating that these constraints may suffice to determine a unique set of poles (i.e. particles and resonances) in all channels, thus providing the basis of a theory of the strong interactions. An example of a detailed summary of all these ideas is the set of lectures delivered by Chew in the 1965 Les-Houches Summer School [Chew 1965].

Another important element of the dynamics of strong-interactions was the use of Regge-poles [Regge 1959, 1960]. The asymptotic behavior of a scattering amplitude at high energies (large s and negative t) has been composed of a set of terms of the type s^{\alpha(t)} where \alpha(t), for negative t values,
was a (linear) extrapolation of angular momenta of particles (or strong interaction resonances) of masses \(m \) observed for a given set of quantum numbers in the crossed channel, i.e. for positive \(t=m^2 \) values [Chew and Frautschi, 1962]. Their presumed linear behavior is depicted in the Chew-Frautschi plot reproduced in Fig. 2. The Froissart bound [Froissart 1961], stating that \(\sigma_T \) cannot increase asymptotically faster than \(\log^2(s) \), meant that all \(\alpha(0) \) had to be smaller than 1. The Regge pole with \(\alpha(0) = 1 \) in Fig. 2 was called the Pomeron, leading to constant total cross-section and implementing the Pomeranchuk theorem, which stated that the asymptotic total cross-sections of particles and of their anti-particles were identical. The Pomeron was exceptional, because no particles were identified for \(t>0 \) which were fit to lie on its trajectory. All other Regge-poles were associated with known particles and resonances with relevant quantum numbers, accounting for many phenomenological observations at large \(s \) and negative \(t \). Corrections to this picture were presumed to be due to lower-lying cuts in complex angular momentum. For positive \(t \), one expected to find further resonances with ever-increasing angular momenta.
Fig. 1. The Mandelstam plot for πN scattering, taken from the original paper [1958]. Masses of π and N are denoted by μ and M, respectively. The physical region of s is the shaded region on the bottom right.
The late 50s and early 60s have witnessed the uncovering of an increasing zoo of particles and resonances. Some of them can be seen in Fig. 2, where they served as the basis of deciding which Regge trajectories should influence high-energy scattering amplitudes. By that time there existed already many sets of particles with different spin (J) and parity (P) quantum numbers, and the hope was that a symmetry higher than the spin symmetry SU(2) will be found to account for ordering spectra of the same J^P, but different isospin and strangeness, into the same representation. The SU(3) symmetry (which today should be referred to as flavor-SU(3)) proposed by Gell-Mann [1961, 1962] and Ne’eman [1961] was one of the suggested
symmetry models. It has accommodated pseudo-scalar and vector mesons in singlet and octet representations, and the lowest baryons of spin ½ were also nicely accounted for by an octet representation. There existed 9 spin 3/2 resonances which could fit into a decuplet, if a tenth strangeness -3 particle could be found [Gell-Mann 1962]. With the experimental discovery of the stable Ω⁻ particle [Barnes 1964], which served to complete the spin 3/2 decuplet, the Gell-Mann and Ne’eman SU(3) model has won overall recognition as the correct symmetry model of strong interactions. This symmetry model provided also a framework for mass formulas, as well as their electromagnetic corrections, and it also served as a basis for postulating the structure of weak-interaction currents, etc. The symmetry considerations became so popular that, within a few years, various extensions of SU(3) into higher symmetries have been proposed, like SU(6) (including spin degrees of freedom) and more, but all of them looked quite speculative and the interest in them diminished throughout the years while flavor-SU(3) stood its ground. The early period of flavor-SU(3) has been summarized in “The Eightfold Way” [Gell-Mann and Ne’eman 1964].

In the meantime, Gell-Mann [1964] has proposed the quark model, and Zweig [1964] has independently proposed his ace-model. The quark model built the isospin degrees of freedom from u and d quarks, and associated the strangeness quantum number with the s quark. Thus all mesons were accounted for by quark-antiquark combinations and all baryons could be viewed as three quark structures. Most physicists have regarded this viewpoint as a mnemonic for SU(3) symmetry considerations, rather than viewing quarks as real physical objects. The strong belief that all true physical variables should be experimentally measurable was at the heart of this refusal to accept quarks as physical building blocks, because of their fractional electric charges and wrong spin-statistics relations. Nonetheless it won popularity because the quark model seemed to be the natural way to explain SU(3) representations, i.e. why representations other than 1, 8, and 10 have not been observed in hadron physics. Clearly most of the dynamic consequences of quark-based descriptions like SU(3) breaking (mass differences) and electromagnetic mass-shifts etc., could just as well be stated in terms of operators with specific SU(3) characteristics. There were
however a few indications of experimental phenomena that required a quark-based rule. One example was the Zweig rule [1964], explaining the amazing dominance of the decay mode $\phi \rightarrow K^+ + K^-$ in terms of the assumption that ϕ is a bound-state of an s quark and anti-quark. Note that this quark structure meant a particular mixing of SU(3) singlet and octet states. The striking argument was that if strong decay can proceed only in terms of Feynman diagrams in which the quark anti-quark pair does not annihilate (“rule of ace conservation” in Zweig’s language), it accounts for the dominance of this particular decay mode.

Zweig’s approach was an early example of what became known as the constituent-quark point of view; regarding quarks within particles the same way one considers nucleons within nuclei, without trying to explain the unresolved conceptual problems. An early review of hadron physics as accounted for by this naïve quark approach can be found in [Dalitz 1965]. A detailed account of the development of the quark model has been presented by Lipkin [1973].

Duality of the Strong Interactions

By the mid-sixties there existed then two important observations regarding hadron spectra. One was that their states fit well into quark model constructs, and the other was that towers of resonances with ever-increasing masses and angular momenta are expected to exist in conjunction with the Regge model. The question still remained how all this can fit into the bootstrap approach. It turned out that what was missing was a formulation of the bootstrap idea that can unite the two.

Such a formulation has been proposed by the Finite Energy Sum Rules (FESR) [Horn 1967, Logunov 1967, Igi 1967, Dolen 1967, 1968]. Employing analyticity of the S-matrix, the FESR approach incorporated experimental scattering amplitudes as an input, up to some finite energy, and Regge-pole parameterization from that point on. This allowed relating these two contributions using a Cauchy integral approach. Applying it to inelastic scattering, such as $\pi^- p \rightarrow \pi^0 n$, one ended up with a relationship of the type
expressed in Fig. 3, implying that the Regge-pole amplitude, when continued to low-energies, can approximate on average the resonance contributions. Or, vice versa, the resonances can be used to account for Regge-pole properties. Inelastic scattering channels were used in order to avoid the Pomeron issue: the elastic channel was assumed to be dominated by Pomeron exchange, with \(\alpha(0)=1 \) (see Fig. 2), and its s-channel amplitude was evidently not dominated by resonances.

The FESR approach was quite revolutionary on two counts. First it went against the then common trend to sum both types of contributions, resonances and Regge exchanges, to the scattering amplitude. This practice has followed the common experience from the use of Feynman diagrams, which the FESR have shown to involve double-counting. Second, it has led to a concrete realization of the bootstrap idea: the resonances in the s-channel have now successfully been related to Regge poles that are the analytic continuation of resonances in the t-channel. This has also become to be known as hadron duality [Chew 1968].

![Fig. 3. Duality as implemented by the FESR](image)

The dual relationship of Fig. 3 can also be captured within a mathematical model, as demonstrated by Veneziano [1968]. Using linear Regge
trajectories he expressed his model in terms of the Euler Beta function. This mathematical realization has led to a flurry of theoretical activity studying dual resonance models in the following years.

Duality Diagrams

With hadrons appearing as quark-model resonances in both the s-channel and the t- and u-channels, it seemed natural to try and account for both in one diagrammatic description. A merger of the duality principle and the quark model came about through the duality diagrams which have been proposed by Harari [1969] and by Rosner [1969]. The diagrams, such as the examples shown in Fig. 4, display scattering amplitudes in terms of two- or three-quark components, as befitting mesons and baryons, but their s- and t-structure is that of a dual amplitude. Although they did not account for Pomeron exchanges, duality diagrams presented a theoretical framework which has described the understanding of strong interaction dynamics at that time. They have also extended the thinking underlying Zweig’s rule into the realm of scattering amplitudes, thus encapsulating all allowed and forbidden resonances and Regge exchanges in their various channels.
Fig. 4: Duality diagrams, taken from Harari [1969], representing meson-meson and meson-baryon scattering amplitudes. They may be realized as representing resonances in the s-channel and Regge exchanges in the t-channel, both obeying quark-model assignments.

One should however admit that, although duality diagrams served as an underlying conceptual framework, explaining allowed and forbidden reaction channels, they fell short of providing a model which can explain the observed dynamical features of scattering phenomena and multi-particle production. The discussion of these phenomena continued to make use of concepts derived from various field-theoretical or statistical models, which have dominated the relevant literature [Horn 1973]. One important reason was that high-energy reactions consisted mostly of multi-pion production, in flagrant violation of what might be expected from a system which is symmetric under flavor-SU(3). Therefore one still needed theoretical tools which could deal with pion dominated phenomena.

References

