Unitarization procedures applied to a Strongly Interacting EWSBS

Rafael L. Delgado

A.Dobado, M.J.Herrero, Felipe J.Llanes-Estrada and J.J.Sanz-Cillero,

2015 Intern. Summer Workshop on Reaction Theory,
Indiana University, June 8-19, 2015

Electroweak symmetry breaking: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$

- Three would-be Goldstone bosons ω.
- Equivalence theorem: for $s \gg 100$ GeV, identify them with the longitudinal components of W and Z.
- A 125-126 GeV scalar “Higgs” resonance φ.
Electroweak symmetry breaking: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$

Three would-be Goldstone bosons ω.

- Equivalence theorem: for $s \gg 100$ GeV,
 Identify them with the longitudinal components of W and Z.

- A 125-126 GeV scalar “Higgs” resonance φ.
Electroweak symmetry breaking: \(SU(2)_L \times SU(2)_R \rightarrow SU(2)_C \)

- Three would-be Goldstone bosons \(\omega \).
- Equivalence theorem: for \(s \gg 100 \text{ GeV} \), identify them with the longitudinal components of W and Z.
- A 125-126 GeV scalar “Higgs” resonance \(\varphi \).
Electroweak symmetry breaking:
\[SU(2)_L \times SU(2)_R \rightarrow SU(2)_C \]

Three would-be Goldstone bosons \(\omega \).

Equivalence theorem: for \(s \gg 100 \text{ GeV} \),
Identify them with the longitudinal components of \(W \) and \(Z \).

A 125-126 GeV scalar “Higgs” resonance \(\varphi \).
Empirical situation

<table>
<thead>
<tr>
<th>New physics?</th>
<th>600 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>H (125.9 GeV, PDG 2013)</td>
<td></td>
</tr>
<tr>
<td>W (80.4 GeV), Z (91.2 GeV)</td>
<td></td>
</tr>
</tbody>
</table>

- **IMPORTANT:** No new physics!! *If there is any...*
- Four scalar light modes, a strong gap.
- Natural: further spontaneous symmetry breaking at $f > v = 246$ GeV?
Empirical situation

Important: No new physics!! *If there is any...*

- Four scalar light modes, a strong gap.
- Natural: further spontaneous symmetry breaking at $f > \nu = 246$ GeV?

New physics? 600 GeV

H (125.9 GeV, PDG 2013)
W (80.4 GeV), Z (91.2 GeV)
Empirical situation

New physics? 600 GeV

- IMPORTANT: No new physics!! *If there is any...*
- Four scalar light modes, a strong gap.
- Natural: further spontaneous symmetry breaking at $f > v = 246$ GeV?

H (125.9 GeV, PDG 2013)
W (80.4 GeV), Z (91.2 GeV)
Effective Field Theory + Unitarity: similarity with low–energy (i.e.: hadronic) physics

Chiral Perturbation Theory plus Dispersion Relations.
Simultaneous description of $\pi\pi \rightarrow \pi\pi$ and $\pi K\pi K \rightarrow \pi K\pi K$ up to 800-1000 MeV including resonances.

Lowest order ChPT (Weinberg Theorems) and even one-loop computations are only valid at very low energies.

A. Dobado, J.R. Peláez
We have no clue of what, how or if new physics...
Most general NLO Lagrangian for ω, h at low energy

\[
\mathcal{L} = \left[1 + 2a \frac{h}{v} + b \left(\frac{h}{v} \right)^2 \right] \frac{\partial_\mu \omega^a \partial_\mu \omega^b}{2} \left(\delta^{ab} + \frac{\omega^a \omega^b}{v^2} \right) \\
+ \frac{4a_4}{v^4} \partial_\mu \omega^a \partial_\nu \omega^a \partial_\mu \omega^b \partial_\nu \omega^b \\
+ \frac{4a_5}{v^4} \partial_\mu \omega^a \partial_\nu \omega^a \partial_\mu \omega^b \partial_\nu \omega^b \\
+ \frac{2d}{v^4} \partial_\mu h \partial_\mu h \partial_\mu \omega^a \partial_\nu \omega^a + \frac{2e}{v^4} \partial_\mu h \partial_\mu \omega^a \partial_\nu h \partial_\nu \omega^a \\
+ \frac{1}{2} \partial_\mu h \partial_\mu h + \frac{g}{v^4} (\partial_\mu h \partial_\mu h)^2
\]
We also consider the case of the $\gamma\gamma \to W_L^+ W_L^-$ and $\gamma\gamma \to Z_L^+ Z_L^-$ scattering (unitarization is work in progress).

Current efforts for measuring these channels (although only 2 events measured).

Wait for LHC Run–II and CMS–TOTEM.

We also consider the case of the \(\gamma\gamma \rightarrow W_L^+ W_L^- \) and \(\gamma\gamma \rightarrow Z_L Z_L \) scattering (unitarization is work in progress).

Current efforts for measuring these channels (although only 2 events measured).

- Wait for LHC Run–II and CMS–TOTEM.

We also consider\(^1\) the case of the $\gamma\gamma \rightarrow W^+_LW^-_L$ and $\gamma\gamma \rightarrow Z_LZ_L$ scattering (unitarization is work in progress).

Current efforts for measuring these channels (although only 2 events measured).

Wait for LHC Run–II and CMS–TOTEM.

We also consider the case of the $\gamma\gamma \to W^+_L W^-_L$ and $\gamma\gamma \to Z_L Z_L$ scattering (unitarization is work in progress).

Current efforts for measuring these channels (although only 2 events measured).

Wait for LHC Run–II and CMS–TOTEM.

Particular cases of the theory

- $a^2 = b = 1$, SM
- $a^2 = b = 0$, Higgsless ECL2
- $a^2 = 1 - \frac{v^2}{f^2}$, $b = 1 - \frac{2v^2}{f^2}$, $SO(5)/SO(4)$ MCHM3
- $a^2 = b = \frac{v^2}{f^2}$, Dilaton4

3See, for example, K. Agashe, R. Contino and A. Pomarol, Nucl. Phys. B 719, 165 (2005)

4See, for example, E. Halyo, Mod. Phys. Lett. A 8 (1993) 275
Particular cases of the theory

- $a^2 = b = 1$, SM
- $a^2 = b = 0$, Higgsless ECL\(^2\)
- $a^2 = 1 - \frac{v^2}{f^2}$, $b = 1 - \frac{2v^2}{f^2}$, $SO(5)/SO(4)$ MCHM\(^3\)
- $a^2 = b = \frac{v^2}{f^2}$, Dilaton\(^4\)

\(^3\)See, for example, K. Agashe, R. Contino and A. Pomarol, Nucl. Phys. B \textbf{719}, 165 (2005)

\(^4\)See, for example, E. Halyo, Mod. Phys. Lett. A \textbf{8} (1993) 275

Particular cases of the theory

- $a^2 = b = 1$, SM
- $a^2 = b = 0$, Higgsless ECL²
- $a^2 = 1 - \frac{v^2}{f^2}$, $b = 1 - \frac{2v^2}{f^2}$, $SO(5)/SO(4)$ MCHM³
- $a^2 = b = \frac{v^2}{f^2}$, Dilaton⁴

⁴See, for example, E. Halyo, Mod. Phys. Lett. A 8 (1993) 275
Particular cases of the theory

- $a^2 = b = 1$, SM
- $a^2 = b = 0$, Higgsless ECL
- $a^2 = 1 - \frac{v^2}{f^2}$, $b = 1 - \frac{2v^2}{f^2}$, $SO(5)/SO(4)$ MCHM
- $a^2 = b = \frac{v^2}{f^2}$, Dilaton

3 See, for example, K. Agashe, R. Contino and A. Pomarol, Nucl. Phys. B 719, 165 (2005)

4 See, for example, E. Halyo, Mod. Phys. Lett. A 8 (1993) 275
Experimental bounds on low-energy constants

As it would require measuring the coupling of two Higgses, there is no experimental bound over the value of b parameter\(^5\). Over a, at a confidence level of 2σ (95%),

- CMS\(^6\) .. $a \in (0.88, 1.15)$
- ATLAS\(^7\) .. $a \in (0.96, 1.34)$

\(^6\) Report No. CMS-PAS-HIG-14-009.

\(^7\) Report No. ATLAS-CONF-2014-009
As it would require measuring the coupling of two Higgses, there is no experimental bound over the value of b parameter\(^5\). Over a, at a confidence level of 2σ (95%),

- CMS\(^6\) \hspace{1cm} a \in (0.88, 1.15)
- ATLAS\(^7\) \hspace{1cm} a \in (0.96, 1.34)

\(^{6}\) Report No. CMS-PAS-HIG-14-009.

\(^{7}\) Report No. ATLAS-CONF-2014-009
As it would require measuring the coupling of two Higgses, there is no experimental bound over the value of b parameter5. Over a, at a confidence level of 2σ (95%),

- CMS6 \hspace{1cm} $a \in (0.88, 1.15)$
- ATLAS7 \hspace{1cm} $a \in (0.96, 1.34)$

5Giardino, P.P., Aspects of LHC phonem., PhD Thesis (2013), Università di Pisa
6Report No. CMS-PAS-HIG-14-009.
7Report No. ATLAS-CONF-2014-009
The form of the partial wave is

\[
A_{IJ}(s) = \frac{1}{64\pi} \int_{-1}^{1} d(\cos \theta) P_J(\cos \theta) A_I(s, t, u)
\]

\[
= A_{IJ}^{(0)} + A_{IJ}^{(1)} + \ldots
\]
Partial Waves

The form of the partial wave is

\[
A_{IJ}(s) = \frac{1}{64\pi} \int_{-1}^{1} d(cos \theta)P_J(cos \theta)A_l(s, t, u)
\]

\[
= A_{IJ}^{(0)} + A_{IJ}^{(1)} + \ldots
\]

Which will be decomposed as

\[
A_{IJ}^{(0)} = Ks
\]

\[
A_{IJ}^{(1)} = \left(B(\mu) + D \log \frac{s}{\mu^2} + E \log \frac{s}{\mu^2} \right) s^2
\]
Partial Waves

The form of the partial wave is

\[A_{IJ}(s) = \frac{1}{64\pi} \int_{-1}^{1} d(cos \theta) P_{J}(cos \theta) A_{I}(s, t, u) \]

\[= A_{IJ}^{(0)} + A_{IJ}^{(1)} + \ldots \]

Which will be decomposed as

\[A_{IJ}^{(0)} = Ks \]

\[A_{IJ}^{(1)} = \left(B(\mu) + D \log \frac{s}{\mu^2} + E \log \frac{s}{\mu^2} \right) s^2 \]

As \(A_{IJ}(s) \) must be scale independent,

\[B(\mu) = B(\mu_0) + (D + E) \log \frac{\mu^2}{\mu_0^2} \]
Unitarization procedures

\[A^{IAM}(s) = \frac{[A^{(0)}(s)]^2}{A^{(0)}(s) - A^{(1)}(s)} \]

\[A^{N/D}(s) = \frac{A^{(0)}(s) + A_L(s)}{1 - \frac{A_R(s)}{A^{(0)}(s)}} + \frac{1}{2} g(s) A_L(-s) \]

\[A^{IK}(s) = \frac{A^{(0)}(s) + A_L(s)}{1 - \frac{A_R(s)}{A^{(0)}(s)}} + g(s) A_L(s) \]

\[A^{0K}(s) = \frac{A_0(s)}{1 - iA_0(s)} \quad A_L(s) = \pi g(-s) D s^2 \]

\[A_R(s) = \pi g(s) E s^2 \]

\[g(s) = \frac{1}{\pi} \left(\frac{B(\mu)}{D + E} + \log \frac{-s}{\mu^2} \right) \]

PRD 91 (2015) 075017
Validity range of unitarization procedures

<table>
<thead>
<tr>
<th>IJ</th>
<th>00</th>
<th>02</th>
<th>11</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of choice</td>
<td>Any</td>
<td>N/D</td>
<td>IK</td>
<td>IAM</td>
<td>Any</td>
</tr>
</tbody>
</table>

- The IAM method cannot be used when $A^{(0)} = 0$, because it would give a vanishing value.
- The N/D and the IK methods cannot be used if $D + E = 0$, because in this case computing $A_L(s)$ and $A_R(s)$ is not possible.
- The naive K-matrix method,

$$A_0^K(s) = \frac{A_0(s)}{1 - iA_0(s)},$$

fails because it is not analytical in the first Riemann sheet and, consequently, it is not a proper partial wave compatible with microcausality.
Validity range of unitarization procedures

<table>
<thead>
<tr>
<th>IJ</th>
<th>00</th>
<th>02</th>
<th>11</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of choice</td>
<td>Any</td>
<td>N/D IK</td>
<td>IAM</td>
<td>Any</td>
<td>N/D IK</td>
</tr>
</tbody>
</table>

- The IAM method cannot be used when $A^{(0)} = 0$, because it would give a vanishing value.
- The N/D and the IK methods cannot be used if $D + E = 0$, because in this case computing $A_L(s)$ and $A_R(s)$ is not possible.
- The naive K-matrix method,

$$A^K_0(s) = \frac{A_0(s)}{1 - iA_0(s)},$$

fails because it is not analytical in the first Riemann sheet and, consequently, it is not a proper partial wave compatible with microcausality.
Validity range of unitarization procedures

<table>
<thead>
<tr>
<th>IJ</th>
<th>00</th>
<th>02</th>
<th>11</th>
<th>20</th>
<th>22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of choice</td>
<td>Any</td>
<td>N/D IK</td>
<td>IAM</td>
<td>Any</td>
<td>N/D IK</td>
</tr>
</tbody>
</table>

- The IAM method cannot be used when $A^{(0)} = 0$, because it would give a vanishing value.
- The N/D and the IK methods cannot be used if $D + E = 0$, because in this case computing $A_L(s)$ and $A_R(s)$ is not possible.
- The naive K-matrix method,

$$A^K_0(s) = \frac{A_0(s)}{1 - iA_0(s)},$$

fails because it is not analytical in the first Riemann sheet and, consequently, it is not a proper partial wave compatible with microcausality.
Scalar-isoscalar channels

From left to right and top to bottom, elastic $\omega\omega$, elastic hh, and cross channel $\omega\omega \to hh$, for $a = 0.88$, $b = 3$, $\mu = 3$ TeV and all NLO parameters set to 0. PRL 114 (2015) 221803, PRD 91 (2015) 075017.
Vector-isovector channels

We have taken $a = 0.88$ and $b = 1.5$, but while for the left plot all the NLO parameters vanish, for the right plot we have taken $a_4 = 0.003$, known to yield an IAM resonance according to the Barcelona group, PRD 90 (2014) 015035.

Scalar-isotensor channels ($IJ = 20$)

From left to right, $a = 0.88$, $a = 1.15$. We have taken $b = a^2$ and the NLO parameters set to zero. Both real and imaginary part shown. Real ones correspond to bottom lines at left and upper at low E at right.

Isotensor-scalar channels ($IJ = 02$)

$a = 0.88$, $b = a^2$, $a_4 = -2a_5 = 3/(192\pi)$, all the other NLO param. set to zero. PRD 91 (2015) 075017.
Resonance from $W_L W_L \rightarrow hh$

$a = 1, \ b = 2, \ IAM,\
elastic\ channel\ W_L W_L \rightarrow W_L W_L$

Rafael L. Delgado,\
Antonio Dobado,\
Felipe J. Llanes-Estrada, \
Possible New Resonance from\ $W_L W_L$-hh Interchannel\ Coupling,
Resonance from $W_L W_L \rightarrow hh$

$a = 1, \ b = 2, \ IAM, \ inelastic\ channel\ W_L W_L \rightarrow hh$

Rafael L. Delgado,
Antonio Dobado,
Felipe J. Llanes-Estrada,
Possible New Resonance from $W_L W_L$-hh Interchannel Coupling,

PRL 114 (2015) 221803
Motion of the resonance mass and width

Dependence on b with $a^2 = 1$ fixed (upper curve) and for $a = 1\xi$ and $b = 12\xi$ with $\xi = \nu/f$ as in the MCHM (lower blue curve).

PRL 114 (2015) 221803
Resonances in $W_L W_L \rightarrow W_L W_L$ due to a_4 and a_5 paramet.

Espriu, Yencho, Mescia
PRD88, 055002
PRD90, 015035
At right, exclusion regions include resonances with $M_{S,V} < 600$ GeV.
Resonances in $W_L W_L \rightarrow W_L W_L$ due to a_4 and a_5 paramet.

- $a = 0.90$, $b = a^2$
- PRD 91 (2015) 075017
- From left, clockwise, $IJ = 00, 11, 20$
- Excluding resonances $M_S < 700$ GeV, $M_V < 1.5$ TeV

Rafael L. Delgado

Unitarization procedures......
Resonances in $W_L W_L \rightarrow W_L W_L$ due to a and a_4 parameters

- $b = a^2$
- From left, clockwise, $IJ = 00, 11, 20$
- Excluding resonances $M_S < 700 \text{ GeV}$, $M_V < 1.5 \text{ TeV}$

PRD 91 (2015) 075017

Rafael L. Delgado
Resonances in $W_L W_L \rightarrow W_L W_L$ due to a and b parameters

- **PRL & PRD** 91 (2015) 075017
- From left, clockwise, $IJ = 00, 11, 20$
- Excluding resonances $M_S < 700$ GeV, $M_V < 1.5$ TeV
- Constraint over b even without data about $W_L W_L \rightarrow hh$ and $hh \rightarrow hh$ scattering processes.

Rafael L. Delgado
Resonances in $W_L W_L \rightarrow W_L W_L$ due to b, g, d and e parameters

Effective Theory, PRD 91 (2015) 075017, isoscalar channels ($I = J = 0$).
Two parameterizations have been considered (two effective Lagrangians obtained), giving the same results.

One loop computation for the process $\gamma\gamma \rightarrow \omega_L^a\omega_L^b$.

Simple result compared with the complexity of the computation.

$$\mathcal{M} = ie^2(\epsilon^\mu_1 \epsilon^\nu_2 T^{(1)}_{\mu\nu})A(s, t, u) + ie^2(\epsilon^\mu_1 \epsilon^\nu_2 T^{(2)}_{\mu\nu})B(s, t, u)$$

$$T^{(1)}_{\mu\nu} = \frac{s}{2}(\epsilon_1 \epsilon_2) - (\epsilon_1 k_2)(\epsilon_2 k_1)$$

$$T^{(2)}_{\mu\nu} = 2s(\epsilon_1 \Delta)(\epsilon_2 \Delta) - (t - u)^2(\epsilon_1 \epsilon_2) - 2(t - u)[(\epsilon_1 \Delta)(\epsilon_2 k_1) - (\epsilon_1 k_2)(\epsilon_2 \Delta)]$$

$$\Delta^\mu = p^\mu_1 - p^\mu_2$$
Two parameterizations have been considered (two effective Lagrangians obtained), giving the same results.

One loop computation for the process $\gamma\gamma \rightarrow \omega^a_L \omega^b_L$.

Siple result compared with the complexity of the computation.

\[
\mathcal{M} = ie^2(\epsilon_1^\mu \epsilon_2^\nu T^{(1)}_{\mu\nu})A(s, t, u) + ie^2(\epsilon_1^\mu \epsilon_2^\nu T^{(2)}_{\mu\nu})B(s, t, u)
\]

\[
T^{(1)}_{\mu\nu} = \frac{s}{2}(\epsilon_1 \epsilon_2) - (\epsilon_1 k_2)(\epsilon_2 k_1)
\]

\[
T^{(2)}_{\mu\nu} = 2s(\epsilon_1 \Delta)(\epsilon_2 \Delta) - (t - u)^2(\epsilon_1 \epsilon_2)
-2(t - u)[(\epsilon_1 \Delta)(\epsilon_2 k_1) - (\epsilon_1 k_2)(\epsilon_2 \Delta)]
\]

\[
\Delta^\mu = p_1^\mu - p_2^\mu
\]
Two parameterizations have been considered (two effective Lagrangians obtained), giving the same results.

One loop computation for the process $\gamma\gamma \rightarrow \omega^a_L\omega^b_L$.

Simple result compared with the complexity of the computation.

\[
M = ie^2 (\epsilon_1^\mu \epsilon_2^\nu T^{(1)}_{\mu\nu})A(s, t, u) + ie^2 (\epsilon_1^\mu \epsilon_2^\nu T^{(2)}_{\mu\nu})B(s, t, u)
\]

\[
T^{(1)}_{\mu\nu} = \frac{s}{2} (\epsilon_1 \epsilon_2) - (\epsilon_1 k_2)(\epsilon_2 k_1)
\]

\[
T^{(2)}_{\mu\nu} = 2s (\epsilon_1 \Delta)(\epsilon_2 \Delta) - (t - u)^2(\epsilon_1 \epsilon_2)\\-2(t - u) [(\epsilon_1 \Delta)(\epsilon_2 k_1) - (\epsilon_1 k_2)(\epsilon_2 \Delta)]
\]

\[
\Delta^\mu = p_1^\mu - p_2^\mu
\]
Two parameterizations have been considered (two effective Lagrangians obtained), giving the same results.

One loop computation for the process $\gamma\gamma \rightarrow \omega_L^a \omega_L^b$.

Simple result compared with the complexity of the computation.

\[
\mathcal{M} = ie^2(\epsilon_1^\mu \epsilon_2^\nu T_{\mu\nu}^{(1)})A(s, t, u) + ie^2(\epsilon_1^\mu \epsilon_2^\nu T_{\mu\nu}^{(2)})B(s, t, u)
\]

\[
T_{\mu\nu}^{(1)} = \frac{s}{2}(\epsilon_1 \epsilon_2) - (\epsilon_1 k_2)(\epsilon_2 k_1)
\]

\[
T_{\mu\nu}^{(2)} = 2s(\epsilon_1 \Delta)(\epsilon_2 \Delta) - (t - u)^2(\epsilon_1 \epsilon_2)
\]

\[
\Delta^{\mu} = p_{1}^{\mu} - p_{2}^{\mu}
\]
\[M(\gamma \gamma \rightarrow zz)_{\text{LO}} = 0 \]
\[A(\gamma \gamma \rightarrow zz)_{\text{NLO}} = \frac{2ac_\gamma}{v^2} + \frac{(a^2 - 1)}{4\pi^2 v^2} \]
\[B(\gamma \gamma \rightarrow zz)_{\text{NLO}} = 0 \]
\[A(\gamma \gamma \rightarrow \omega^+ \omega^-)_{\text{LO}} = 2sB(\gamma \gamma \rightarrow \omega^+ \omega^-)_{\text{LO}} = -\frac{1}{t} - \frac{1}{\mu} \]
\[A(\gamma \gamma \rightarrow \omega^+ \omega^-)_{\text{NLO}} = \frac{8(a_1^r - a_2^r + a_3^r)}{v^2} + \frac{2ac_\gamma}{v^2} + \frac{(a^2 - 1)}{8\pi^2 v^2} \]
\[A(\gamma \gamma \rightarrow \omega^+ \omega^-)_{\text{NLO}} = 0 \]
Ref. JHEP1407 (2014) 149 (scattering $\gamma\gamma \rightarrow \omega_L^+\omega_L^-$) only contains the 1–loop computation.

The next steps will be...

- computing $\omega\omega \rightarrow hh$ matrix element,
- and performing the unitarization.

Both for $\gamma\gamma$ and $\omega_L\omega_L$ scattering, we should

- introduce fermion loops (work in progress),
- non–vanishing values for M_H, M_W, M_Z,
- and a full computation without using the equivalence theorem.

Besides, we are working on the $t\bar{t} \rightarrow \omega_L\omega_L$ channel.
Ref. JHEP1407 (2014) 149 (scattering $\gamma\gamma \rightarrow \omega_L^+\omega_L^-$) only contains the 1–loop computation.

The next steps will be...

- computing $\omega\omega \rightarrow hh$ matrix element,
- and performing the unitarization.

Both for $\gamma\gamma$ and $\omega_L\omega_L$ scattering, we should

- introduce fermion loops (work in progress),
- non–vanishing values for M_H, M_W, M_Z,
- and a full computation without using the equivalence theorem.

Besides, we are working on the $t\bar{t} \rightarrow \omega_L\omega_L$ channel.
Ref. JHEP1407 (2014) 149 (scattering $\gamma\gamma \rightarrow \omega_L^+\omega_L^-$) only contains the 1–loop computation.

The next steps will be...

- computing $\omega\omega \rightarrow hh$ matrix element,
- and performing the unitarization.

Both for $\gamma\gamma$ and $\omega_L\omega_L$ scattering, we should

- introduce fermion loops (work in progress),
- non–vanishing values for M_H, M_W, M_Z,
- and a full computation without using the equivalence theorem.

Besides, we are working on the $t\bar{t} \rightarrow \omega_L\omega_L$ channel.
Ref. JHEP1407 (2014) 149 (scattering $\gamma\gamma \rightarrow \omega_L^+\omega_L^-$) only contains the 1–loop computation.

The next steps will be...
- computing $\omega\omega \rightarrow hh$ matrix element,
- and performing the unitarization.

Both for $\gamma\gamma$ and $\omega_L\omega_L$ scattering, we should
- introduce fermion loops (work in progress),
- non–vanishing values for M_H, M_W, M_Z,
- and a full computation without using the equivalence theorem.

Besides, we are working on the $t\bar{t} \rightarrow \omega_L\omega_L$ channel.
Ref. JHEP1407 (2014) 149 (scattering $\gamma\gamma \rightarrow \omega_L^+\omega_L^-$) only contains the 1-loop computation.

The next steps will be...

- computing $\omega\omega \rightarrow hh$ matrix element,
- and performing the unitarization.

Both for $\gamma\gamma$ and $\omega_L\omega_L$ scattering, we should

- introduce fermion loops (work in progress),
- non-vanishing values for M_H, M_W, M_Z,
- and a full computation without using the equivalence theorem.

Besides, we are working on the $t\bar{t} \rightarrow \omega_L\omega_L$ channel.
Work in progress

- Ref. JHEP**1407** (2014) 149 (scattering $\gamma\gamma \rightarrow \omega_L^+\omega_L^-$) only contains the 1-loop computation.
- The next steps will be...
 - computing $\omega\omega \rightarrow hh$ matrix element,
 - and performing the unitarization.
- Both for $\gamma\gamma$ and $\omega_L\omega_L$ scattering, we should
 - introduce fermion loops (work in progress),
 - non-vanishing values for M_H, M_W, M_Z,
 - and a full computation without using the equivalence theorem.
- Besides, we are working on the $t\bar{t} \rightarrow \omega_L\omega_L$ channel.
Ref. JHEP1407 (2014) 149 (scattering $\gamma\gamma \rightarrow \omega_L^+\omega_L^-$) only contains the 1–loop computation.

The next steps will be...

- computing $\omega\omega \rightarrow hh$ matrix element,
- and performing the unitarization.

Both for $\gamma\gamma$ and $\omega_L\omega_L$ scattering, we should

- introduce fermion loops (work in progress),
- non–vanishing values for M_H, M_W, M_Z,
- and a full computation without using the equivalence theorem.

Besides, we are working on the $t\bar{t} \rightarrow \omega_L\omega_L$ channel.
Ref. JHEP1407 (2014) 149 (scattering $\gamma\gamma \rightarrow \omega^+\omega^-$) only contains the 1–loop computation.

The next steps will be...
- computing $\omega\omega \rightarrow hh$ matrix element,
- and performing the unitarization.

Both for $\gamma\gamma$ and $\omega_L\omega_L$ scattering, we should
- introduce fermion loops (work in progress),
- non–vanishing values for M_H, M_W, M_Z,
- and a full computation without using the equivalence theorem.

Besides, we are working on the $t\bar{t} \rightarrow \omega_L\omega_L$ channel.
Ref. JHEP1407 (2014) 149 (scattering $\gamma\gamma \rightarrow \omega_L^+\omega_L^-$) only contains the 1–loop computation.

The next steps will be...

- computing $\omega\omega \rightarrow hh$ matrix element,
- and performing the unitarization.

Both for $\gamma\gamma$ and $\omega_L\omega_L$ scattering, we should

- introduce fermion loops (work in progress),
- non–vanishing values for M_H, M_W, M_Z,
- and a full computation without using the equivalence theorem.

Besides, we are working on the $t\bar{t} \rightarrow \omega_L\omega_L$ channel.
New scalar particle + mass gap

- New physics would very likely imply strong interactions, in elastic $W_L W_L$ and inelastic $\rightarrow hh$ scattering.
- For $a^2 = b \neq 1$, strong elastic interactions are expected for $W_L W_L$, and a second, broad scalar analogous to the σ in nuclear physics possibly appears. We identify a pole at 800 GeV or above in the second Riemann sheet very clearly, the question is whether it corresponds to a physical particle since it is so broad.
- Even if $a \approx 1$, with small λ_i (higher powers of h), but we allow $b > a^2$, one can have strong dynamics resonating between the $W_L W_L$ and hh channels, likewise possibly generating a new scalar pole of the scattering amplitude in the sub-TeV region.
- This fact allows to constrain b even in the absence of data about $W_L W_L \rightarrow hh$ and $hh \rightarrow hh$, just looking at the $W_L W_L$ scattering.
- Finally, as an exception, for $a^2 = b = 1$, we recover the Minimal Standard Model with a light Higgs which is weakly interacting.
Conclusions

- New scalar particle + mass gap
- New physics would very likely imply strong interactions, in elastic $W_L W_L$ and inelastic $\rightarrow hh$ scattering.

- For $a^2 = b \neq 1$, strong elastic interactions are expected for $W_L W_L$, and a second, broad scalar analogous to the σ in nuclear physics possibly appears. We identify a pole at 800 GeV or above in the second Riemann sheet very clearly, the question is whether it corresponds to a physical particle since it is so broad.

- Even if $a \approx 1$, with small λ_i (higher powers of h), but we allow $b > a^2$, one can have strong dynamics resonating between the $W_L W_L$ and hh channels, likewise possibly generating a new scalar pole of the scattering amplitude in the sub-TeV region.

- This fact allows to constrain b even in the absence of data about $W_L W_L \rightarrow hh$ and $hh \rightarrow hh$, just looking at the $W_L W_L$ scattering.

- Finally, as an exception, for $a^2 = b = 1$, we recover the Minimal Standard Model with a light Higgs which is weakly interacting.
Conclusions

- New scalar particle + mass gap
- New physics would very likely imply strong interactions, in elastic \(W_L W_L \) and inelastic \(\rightarrow hh \) scattering.
- For \(a^2 = b \neq 1 \), strong elastic interactions are expected for \(W_L W_L \), and a second, broad scalar analogous to the \(\sigma \) in nuclear physics possibly appears. We identify a pole at 800 GeV or above in the second Riemann sheet very clearly, the question is whether it corresponds to a physical particle since it is so broad.
- Even if \(a \approx 1 \), with small \(\lambda_i \) (higher powers of \(h \)), but we allow \(b > a^2 \), one can have strong dynamics resonating between the \(W_L W_L \) and \(hh \) channels, likewise possibly generating a new scalar pole of the scattering amplitude in the sub-TeV region.
- This fact allows to constrain \(b \) even in the absence of data about \(W_L W_L \rightarrow hh \) and \(hh \rightarrow hh \), just looking at the \(W_L W_L \) scattering.
- Finally, as an exception, for \(a^2 = b = 1 \), we recover the Minimal Standard Model with a light Higgs which is weakly interacting.
Conclusions

- New scalar particle + mass gap
- New physics would very likely imply strong interactions, in elastic $W_L W_L$ and inelastic $→ hh$ scattering.
- For $a^2 = b ≠ 1$, strong elastic interactions are expected for $W_L W_L$, and a second, broad scalar analogous to the σ in nuclear physics possibly appears. We identify a pole at 800 GeV or above in the second Riemann sheet very clearly, the question is whether it corresponds to a physical particle since it is so broad.
- Even if $a ≃ 1$, with small λ_i (higher powers of h), but we allow $b > a^2$, one can have strong dynamics resonating between the $W_L W_L$ and hh channels, likewise possibly generating a new scalar pole of the scattering amplitude in the sub-TeV region.
- This fact allows to constrain b even in the absence of data about $W_L W_L → hh$ and $hh → hh$, just looking at the $W_L W_L$ scattering.
- Finally, as an exception, for $a^2 = b = 1$, we recover the Minimal Standard Model with a light Higgs which is weakly interacting.
Conclusions

- New scalar particle + mass gap
- New physics would very likely imply strong interactions, in elastic $W_L W_L$ and inelastic $\rightarrow hh$ scattering.
- For $a^2 = b \neq 1$, strong elastic interactions are expected for $W_L W_L$, and a second, broad scalar analogous to the σ in nuclear physics possibly appears. We identify a pole at 800 GeV or above in the second Riemann sheet very clearly, the question is whether it corresponds to a physical particle since it is so broad.
- Even if $a \approx 1$, with small λ_i (higher powers of h), but we allow $b > a^2$, one can have strong dynamics resonating between the $W_L W_L$ and hh channels, likewise possibly generating a new scalar pole of the scattering amplitude in the sub-TeV region.
- This fact allows to constrain b even in the absence of data about $W_L W_L \rightarrow hh$ and $hh \rightarrow hh$, just looking at the $W_L W_L$ scattering.
- Finally, as an exception, for $a^2 = b = 1$, we recover the Minimal Standard Model with a light Higgs which is weakly interacting.
Conclusions

- New scalar particle + mass gap
- New physics would very likely imply strong interactions, in elastic $W_L W_L$ and inelastic $\rightarrow hh$ scattering.
- For $a^2 = b \neq 1$, strong elastic interactions are expected for $W_L W_L$, and a second, broad scalar analogous to the σ in nuclear physics possibly appears. We identify a pole at 800 GeV or above in the second Riemann sheet very clearly, the question is whether it corresponds to a physical particle since it is so broad.
- Even if $a \approx 1$, with small λ_i (higher powers of h), but we allow $b > a^2$, one can have strong dynamics resonating between the $W_L W_L$ and hh channels, likewise possibly generating a new scalar pole of the scattering amplitude in the sub-TeV region.
- This fact allows to constrain b even in the absence of data about $W_L W_L \rightarrow hh$ and $hh \rightarrow hh$, just looking at the $W_L W_L$ scattering.
- Finally, as an exception, for $a^2 = b = 1$, we recover the Minimal Standard Model with a light Higgs which is weakly interacting.
Conclusions

- **SM → unitarity.**
- Higgsless model (now experimentally excluded) → unitarity violation in WW scattering → new physics.
- Higgs–like boson found → no unitarity violation?
- Not necessarily, with the present experimental bounds.
- Vector Boson Fusion measurements at the LHC Run–II mandatory.
Conclusions

- SM \rightarrow unitarity.
- Higgsless model (now experimentally excluded) \rightarrow unitarity violation in WW scattering \rightarrow new physics.
- Higgs–like boson found \rightarrow no unitarity violation?
- Not necessarily, with the present experimental bounds.
- Vector Boson Fusion measurements at the LHC Run–II mandatory.
Conclusions

- SM → unitarity.
- Higgsless model (now experimentally excluded) → unitarity violation in WW scattering → new physics.
- Higgs–like boson found → no unitarity violation?
 - Not necessarily, with the present experimental bounds.
 - Vector Boson Fusion measurements at the LHC Run–II mandatory.
Conclusions

- SM \rightarrow unitarity.
- Higgsless model (now experimentally excluded) \rightarrow unitarity violation in WW scattering \rightarrow new physics.
- Higgs–like boson found \rightarrow no unitarity violation?
- Not necessarily, with the present experimental bounds.
- Vector Boson Fusion measurements at the LHC Run–II mandatory.
Conclusions

- SM \rightarrow unitarity.
- Higgsless model (now experimentally excluded) \rightarrow unitarity violation in WW scattering \rightarrow new physics.
- Higgs–like boson found \rightarrow no unitarity violation?
- Not necessarily, with the present experimental bounds.
- Vector Boson Fusion measurements at the LHC Run–II mandatory.
Back Slides
1) IAM method

This method needs a NLO computation,

\[\tilde{t}^\omega = \frac{t_0^\omega}{1 - \frac{t_0^\omega}{t_1^\omega}} , \]

where

\[t_1^\omega = s^2 \left(\frac{D \log \left(\frac{s}{\mu^2} \right)}{s^2} + E \log \left(\frac{s}{\mu^2} \right) + (D + E) \log \left(\frac{\mu^2}{\mu_0^2} \right) \right) \]
I) IAM method

This method needs a NLO computation,

\[\tilde{t}^\omega = \frac{t_0^\omega}{1 - \frac{t_0^\omega}{t_1^\omega}}, \]

where

\[t_1^\omega = s^2 \left(D \log \left[\frac{s}{\mu^2} \right] + E \log \left[\frac{-s}{\mu^2} \right] + (D + E) \log \left[\frac{\mu^2}{\mu_0^2} \right] \right) \]
We have checked\(^8\), for the tree level case,

\[\mathcal{L} = \frac{1}{2} g(\varphi / f) \partial_\mu \omega^a \partial^\mu \omega^b \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2 - \omega^2} \right) + \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - \frac{1}{2} M_\varphi^2 \varphi^2 - \lambda_3 \varphi^3 - \lambda_4 \varphi^4 + \ldots \]

\[g(\varphi / f) = 1 + \sum_{n=1}^{\infty} g_n \left(\frac{\varphi}{f} \right)^n = 1 + 2\alpha \frac{\varphi}{f} + \beta \left(\frac{\varphi}{f} \right)^2 + \ldots \]

where \(a \equiv \alpha \nu / f, \ b = \beta \nu^2 / f^2 \), and so one, the concordance with the methods.

\(^8\text{See J.Phys. G41 (2014) 025002.}\)
Check at tree level

We have checked, for the tree level case,

\[\mathcal{L} = \frac{1}{2} g(\varphi/f) \partial_{\mu} \omega^{a} \partial_{\nu} \omega^{b} \left(\delta_{ab} + \frac{\omega^{a} \omega^{b}}{v^2 - \omega^2} \right) \]

\[+ \frac{1}{2} \partial_{\mu} \varphi \partial_{\nu} \varphi - \frac{1}{2} M_{\varphi}^{2} \varphi^2 - \lambda_{3} \varphi^{3} - \lambda_{4} \varphi^{4} + \ldots \]

\[g(\varphi/f) = 1 + \sum_{n=1}^{\infty} g_{n} \left(\frac{\varphi}{f} \right)^{n} = 1 + 2\alpha \frac{\varphi}{f} + \beta \left(\frac{\varphi}{f} \right)^{2} + \ldots \]

where \(a \equiv \alpha \nu / f \), \(b = \beta \nu^2 / f^2 \), and so one, the concordance with the methods

Check at tree level

We have checked\(^8\), for the tree level case,

\[
\mathcal{L} = \frac{1}{2} g(\varphi/f) \partial_\mu \omega^a \partial^\mu \omega^b \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2 - \omega^2} \right) + \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - \frac{1}{2} M^2 \varphi^2 - \lambda_3 \varphi^3 - \lambda_4 \varphi^4 + \ldots
\]

\[
g(\varphi/f) = 1 + \sum_{n=1}^{\infty} g_n \left(\frac{\varphi}{f} \right)^n = 1 + 2\alpha \left(\frac{\varphi}{f} \right) + \beta \left(\frac{\varphi}{f} \right)^2 + \ldots
\]

where \(a \equiv \alpha \nu/f \), \(b = \beta \nu^2/f^2 \), and so one, the concordance with the methods.

Check at tree level

We have checked\(^8\), for the tree level case,

\[
\mathcal{L} = \frac{1}{2} g(\varphi/f) \partial_\mu \omega^a \partial^\mu \omega^b \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2 - \omega^2} \right) \\
+ \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - \frac{1}{2} M_\varphi \varphi^2 - \lambda_3 \varphi^3 - \lambda_4 \varphi^4 + \ldots
\]

\[
g(\varphi/f) = 1 + \sum_{n=1}^{\infty} g_n \left(\frac{\varphi}{f} \right)^n = 1 + 2\alpha \frac{\varphi}{f} + \beta \left(\frac{\varphi}{f} \right)^2 + \ldots
\]

where \(a \equiv \alpha v/f\), \(b = \beta v^2/f^2\), and so one, the concordance with the methods.

\(\tilde{T} = T(1 - J(s)T)^{-1}, \quad J(s) = -\frac{1}{\pi} \log \left[\frac{-s}{\Lambda^2} \right], \)

so that, for \(\tilde{t}_\omega, \)

\[
\tilde{t}_\omega = \frac{t_\omega - J(t_\omega t_\varphi - t_{\omega\varphi}^2)}{1 - J(t_\omega + t_\varphi) + J^2(t_\omega t_\varphi - t_{\omega\varphi}^2)},
\]

for \(\beta = \alpha^2 \) (elastic case),

\[
\tilde{t}_\omega = \frac{t_\omega}{1 - Jt_\omega}
\]
II) K matrix

\[\tilde{T} = T(1 - J(s)T)^{-1}, \quad J(s) = -\frac{1}{\pi} \log \left[\frac{-s}{\Lambda^2} \right], \]

so that, for \(\tilde{t}_\omega \),

\[\tilde{t}_\omega = \frac{t_\omega - J(t_\omega t_\varphi - t^2_{\omega \varphi})}{1 - J(t_\omega + t_\varphi) + J^2(t_\omega t_\varphi - t^2_{\omega \varphi})}, \]

for \(\beta = \alpha^2 \) (elastic case),

\[\tilde{t}_\omega = \frac{t_\omega}{1 - Jt_\omega} \]
II) K matrix

\[\tilde{T} = T \left(1 - J(s) T\right)^{-1}, \quad J(s) = -\frac{1}{\pi} \log \left[\frac{-s}{\Lambda^2} \right], \]

so that, for \(\tilde{t}_\omega \),

\[\tilde{t}_\omega = \frac{t_\omega - J(t_\omega t_\varphi - t_{\omega \varphi})}{1 - J(t_\omega + t_\varphi) + J^2(t_\omega t_\varphi - t_{\omega \varphi})}, \]

for \(\beta = \alpha^2 \) (elastic case),

\[\tilde{t}_\omega = \frac{t_\omega}{1 - Jt_\omega} \]
$N \to \infty$, with ν^2/N fixed. The amplitude A_N to order $1/N$ is a Lippmann-Schwinger series,

$$A_N = A - A \frac{NI}{2} A + A \frac{NI}{2} A \frac{NI}{2} A - \ldots$$

$$I(s) = \int \frac{d^4q}{(2\pi)^4} \frac{i}{q^2(q + p)^2} = \frac{1}{16\pi^2} \log \left[\frac{-s}{\Lambda^2} \right] = -\frac{1}{8\pi} J(s)$$

Note: actually, $N = 3$. For the (iso)scalar partial wave (chiral limit, $I = J = 0$),

$$t_N^\omega(s) = \frac{t_0^\omega}{1 - Jt_0^\omega}$$
$$N \to \infty$$, with $$\nu^2/N$$ fixed. The amplitude $$A_N$$ to order $$1/N$$ is a Lippmann-Schwinger series,

$$A_N = A - A \frac{NI}{2} A + A \frac{NI}{2} A \frac{NI}{2} A - \ldots$$

$$I(s) = \int \frac{d^4q}{(2\pi)^4} \frac{i}{q^2(q+p)^2} = \frac{1}{16\pi^2} \log \left[\frac{-s}{\Lambda^2} \right] = -\frac{1}{8\pi} J(s)$$

Note: actually, $$N = 3$$. For the (iso)scalar partial wave (chiral limit, $$I = J = 0$$),

$$t^\omega_N(s) = \frac{t^\omega_0}{1 - Jt^\omega_0}$$
$N \to \infty$, with ν^2/N fixed. The amplitude A_N to order $1/N$ is a Lippmann-Schwinger series,

$$A_N = A - A \frac{NI}{2} A + A \frac{NI}{2} A \frac{NI}{2} A - \ldots$$

$$I(s) = \int \frac{d^4 q}{(2\pi)^4} \frac{i}{q^2(q + p)^2} = \frac{1}{16\pi^2} \log \left[-s \right] = - \frac{1}{8\pi} J(s)$$

Note: actually, $N = 3$. For the (iso)scalar partial wave (chiral limit, $I = J = 0$),

$$t^\omega_N(s) = \frac{t^\omega_0}{1 - Jt^\omega_0}$$
(elastic scattering at tree level only $\beta = \alpha^2$. See ref. J.Phys. G41 (2014) 025002). Ansatz

$$\tilde{t}^\omega(s) = \frac{N(s)}{D(s)},$$

where $N(s)$ has a left hand cut (and $\text{Im } N(s > 0) = 0$)

$D(s)$ has a right hand cut (and $\Re D(s < 0) = 0$);

$$D(s) = 1 - \frac{s}{\pi} \int_0^\infty ds' \frac{N(s')}{s'(s' - s - i\epsilon)}$$

$$N(s) = \frac{s}{\pi} \int_{-\infty}^0 ds' \frac{\text{Im } N(s')}{s'(s' - s - i\epsilon)}$$
$f = 2v$, $\beta = \alpha^2 = 1$, $\lambda_3 = \frac{M_\phi^2}{f}$, $\lambda_4 = \frac{M_\phi^2}{f^2}$. OX axis: s in TeV2.
Tree level, modulus of \tilde{t}_ω, K matrix

- All units in TeV.
- From top to bottom, $f = 1.2, 0.8, 0.4$ TeV
- $\Lambda = 3$ TeV
- $\mu = 100$ GeV
Im t_ω in the N/D method, $f = 1\,\text{TeV}, \beta = 1, m = 150\,\text{GeV}$
$\text{Re } t_\omega \text{ and } \text{Im } t_\omega$, large N, $f = 400 \text{ GeV}$
Re t_ω and Im t_ω, large N, $f = 4$ TeV
Tree level, motion of the pole position of t_ω
K–matrix, $M_\phi = 125$ GeV, $f \in (250$ GeV, 6 TeV))