Dispersion relations: some applications
Light quark masses from $\eta \to 3\pi$

Emilie Passemar
Indiana University/Jefferson Laboratory
epassema@indiana.edu
1.3 QCD at low energy

- At low energy, impossible to describe QCD with perturbation theory since α_s becomes large.

Need non-perturbative methods.

- Two model independent methods:
 - Effective field theory
 Ex: ChPT for light quarks
 - Numerical simulations on the lattice

[Bethke, EPJC’09]
1.4 Chiral Symmetry

- Limit $m_k \to 0$

\[
\mathcal{L}_{QCD} \to \mathcal{L}_{QCD}^0 = -\frac{1}{4} G_{\mu\nu} G^{\mu\nu} + \bar{q}_L i \gamma^\mu D_\mu q_L + \bar{q}_R i \gamma^\mu D_\mu q_R, \quad q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}
\]

with $q_{L/R} \equiv \frac{1}{2} (1 \pm \gamma_5)q$

Symmetry: $G \equiv SU(3)_L \otimes SU(3)_R \to SU(3)_V$

- G spontaneously broken, ground state not invariant under $G \equiv SU(3)_L \otimes SU(3)_R$ but invariant under $SU(3)_{V=L+R}$

Goldstone bosons with quantum numbers of pseudoscalar mesons are generated

$\pi^+, \pi^0, \pi^-, K^+, K^0, \bar{K}^0, K^-, \eta$ massless states
1.5 Construction of an effective theory: ChPT

- Degrees of freedom: **Goldstone bosons** (GB)
 - Symmetry group: $G \equiv SU(3)_L \otimes SU(3)_R$

- Build all the corresponding invariant operators including explicit symmetry breaking parameters
 - $\mathcal{L}_{ChPT} \equiv \mathcal{L}(U, \chi)$
 - GB’s Masses $\sim m_q$

- Goldstone bosons interact weakly at low energy and $m_u, m_d \ll m_s < \Lambda_{QCD}$
 - Expansion organized in external momenta and quark masses
 - Weinberg’s power counting rule

$$\mathcal{L}_{\text{eff}} = \sum_{d \geq 2} \mathcal{L}_d, \mathcal{L}_d = \mathcal{O}(p^d), p \equiv \{q, m_q\}$$

$$p \ll \Lambda_H = 4\pi F_\pi \sim 1 \text{ GeV}$$
1.6 Chiral expansion

- \(\mathcal{L}_{\text{ChPT}} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \ldots \)
 - \(\text{LO : } \mathcal{O}(p^2) \)
 - \(\text{NLO : } \mathcal{O}(p^4) \)
 - \(\text{NNLO : } \mathcal{O}(p^6) \)

- Renormalizable and unitary order by order in the expansion

- The structure of the lagrangian is fixed by chiral symmetry but not the coupling constants \(\rightarrow \) LECs appearing at each order

 \[\mathcal{L}_2 : F_0, B_0, \quad \mathcal{L}_4 = \sum_{i=1}^{10} L_i O_4^i, \quad \mathcal{L}_6 = \sum_{i=1}^{90} C_i O_6^i \]

- LECs describe the influence of heavy degrees of freedom not contained in the ChPT lagrangian

- Naturalness: LECs of order one
1.6 Chiral expansion

- The LECs calculable if QCD solvable, instead
 - Determined from experimental measurement
 - Estimated with models: Resonances, large N_C
 - Computed on the lattice

- In a specific process, only a limited number of LECs appear
1.6 Chiral expansion

- Ex: $\eta \rightarrow \pi^+ \pi^- \pi^0 \Rightarrow A = A_2 + A_4 + A_6 + \ldots$

- Tree level $\mathcal{O}(p^2)$:

- One loop $\mathcal{O}(p^4)$:

$\pi\pi \rightarrow \pi\pi$ at tree
1.6 Chiral expansion

- Ex: $\eta \rightarrow \pi^+ \pi^- \pi^0 \Rightarrow A = A_2 + A_4 + A_6 + \ldots$

- Tree level $\mathcal{O}(p^2)$:

- One loop $\mathcal{O}(p^4)$:

$\pi \pi \rightarrow \pi \pi$ at tree
Comparison of values of Q from Dashen corrections

![Graph showing comparison of Q values from different authors]

1. The strong interaction as a quantum field theory
2. Dashen, Duncan et al., Bijnens & Prades, Donoghue & Perez
3. Ananthanarayan & Moussallam

Figure 1.4: Q as calculated from a meson ratio with different values for the electromagnetic kaon mass splitting. The left-most point has been calculated in the absence of Dashen violation and thus agrees with Q_{Dashen}. The other points, from left to right, have been taken from Refs. [68–71]. The figure has been inspired by Kaplan and Manohar [73].

This is the value of Q in the absence of Dashen violation. The electromagnetic kaon mass splitting Δm^em_K is substantially changed by higher order effects. Several authors have calculated Dashen violating contributions, e.g., Refs. [68–71], and found deviations from Dashen's theorem that range from 50 up to 150 per cent. Figure 1.4 shows their values for Δm^em_K together with the corresponding results for Q.

Kaplan and Manohar [73] have shown that changes in the quark masses of the form $m_u \rightarrow m_u + \alpha m_d m_s$ (and cyclic) can be absorbed into $O(p^4)$ operators by shifting the low-energy constants L_6, L_7, and L_8 accordingly. The quark mass ratios m_u/m_d, m_s/m_d, and R are not invariant under this transformation which implies that corrections from L_4 can, in principle, change them to any value that can be reached by the aforementioned shift of the quark masses. The double ratio Q, on the other hand, is not affected by the transformation up to corrections of $O(M^2)$. The transformation of the quark masses depends on a single parameter α, such that the ratios m_u/m_d and m_s/m_d are not independent. They are rather constrained to lie on an
Comparison of values of Q

$\eta \rightarrow \pi^+ \pi^- \pi^0$ decays
- Anisovitch & Leutwyler’96
- Kambor, Wiesendanger & Wyler’95

Kaon mass splitting
- no Dashen violation
 - Weinberg’77
- Lattice
 - Ducan et al.’96
- ENJL model
 - Bijnens & Prades’97
- VMD
 - Donoghue & Perez’97
- Sum rules
 - Anant & Moussallam’04
- Sum rules, update
 - Kastner & Neufeld’08

$Q = 22.3 \pm 0.9$
$Q = 22.1 \pm 0.9$
$Q = \pm 22.3 \pm 0.9$
$Q = \pm 22.1 \pm 0.9$

Fair agreement with the determination from meson masses
\[I^G(J^{PC}) = 0^+(0^--) \]

Mass \(m = 547.862 \pm 0.018 \) MeV
Full width \(\Gamma = 1.31 \pm 0.05 \) keV

C-nonconserving decay parameters
- \(\pi^+ \pi^- \pi^0 \) left-right asymmetry = \((0.09^{+0.11}_{-0.12}) \times 10^{-2}\)
- \(\pi^+ \pi^- \pi^0 \) sextant asymmetry = \((0.12^{+0.10}_{-0.11}) \times 10^{-2}\)
- \(\pi^+ \pi^- \pi^0 \) quadrant asymmetry = \((-0.09 \pm 0.09) \times 10^{-2}\)
- \(\pi^+ \pi^- \gamma \) left-right asymmetry = \((0.9 \pm 0.4) \times 10^{-2}\)
- \(\pi^+ \pi^- \gamma \)\(\beta \) (D-wave) = \(-0.02 \pm 0.07 \) (\(S = 1.3 \))

CP-nonconserving decay parameters
- \(\pi^+ \pi^- e^+ e^- \) decay-plane asymmetry \(A_\phi = (-0.6 \pm 3.1) \times 10^{-2} \)

Dalitz plot parameter
- \(\pi^0 \pi^0 \pi^0 \) \(\alpha = -0.0315 \pm 0.0015 \)
<table>
<thead>
<tr>
<th>Decay Modes</th>
<th>Fraction (Γ_j/Γ)</th>
<th>Scale factor/Confidence level</th>
<th>p (MeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2γ</td>
<td>(39.41 ± 0.20) %</td>
<td>$S=1.1$</td>
<td>274</td>
</tr>
<tr>
<td>$3\pi^0$</td>
<td>(32.68 ± 0.23) %</td>
<td>$S=1.1$</td>
<td>179</td>
</tr>
<tr>
<td>$\pi^0\pi^0\gamma$</td>
<td>$(2.7 \pm 0.5) \times 10^{-4}$</td>
<td>$S=1.1$</td>
<td>257</td>
</tr>
<tr>
<td>$2\pi^0\gamma$</td>
<td>$< 1.2 \times 10^{-3}$</td>
<td>$S=90%$</td>
<td>238</td>
</tr>
<tr>
<td>4γ</td>
<td>$< 2.8 \times 10^{-4}$</td>
<td>$S=90%$</td>
<td>274</td>
</tr>
<tr>
<td>invisible</td>
<td>$< 1.0 \times 10^{-4}$</td>
<td>$S=90%$</td>
<td>–</td>
</tr>
</tbody>
</table>

Charged modes

<table>
<thead>
<tr>
<th>Charged modes</th>
<th>Fraction (Γ_j/Γ)</th>
<th>Scale factor/Confidence level</th>
<th>p (MeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^+\pi^-\pi^0$</td>
<td>(28.10 ± 0.34) %</td>
<td>$S=1.2$</td>
<td>–</td>
</tr>
<tr>
<td>$\pi^+\pi^-\gamma$</td>
<td>(22.92 ± 0.28) %</td>
<td>$S=1.1$</td>
<td>174</td>
</tr>
<tr>
<td>$e^+e^-\gamma$</td>
<td>(4.22 ± 0.08) %</td>
<td>$S=1.3$</td>
<td>236</td>
</tr>
<tr>
<td>$\mu^+\mu^-\gamma$</td>
<td>$(6.9 \pm 0.4) \times 10^{-3}$</td>
<td>$S=1.3$</td>
<td>274</td>
</tr>
<tr>
<td>$e^+e^-\mu^+\mu^-$</td>
<td>$(3.1 \pm 0.4) \times 10^{-4}$</td>
<td>$S=1.3$</td>
<td>253</td>
</tr>
<tr>
<td>$\mu^+\mu^-$</td>
<td>$< 5.6 \times 10^{-6}$</td>
<td>$S=90%$</td>
<td>274</td>
</tr>
<tr>
<td>$2e^+2e^-$</td>
<td>$(5.8 \pm 0.8) \times 10^{-6}$</td>
<td>$S=90%$</td>
<td>253</td>
</tr>
<tr>
<td>$\pi^+\pi^-\gamma$</td>
<td>$(2.40 \pm 0.22) \times 10^{-5}$</td>
<td>$S=90%$</td>
<td>274</td>
</tr>
<tr>
<td>$e^+e^-\mu^+\mu^-$</td>
<td>$(2.68 \pm 0.11) \times 10^{-4}$</td>
<td>$S=90%$</td>
<td>235</td>
</tr>
<tr>
<td>$2\mu^+2\mu^-$</td>
<td>$< 5.6 \times 10^{-6}$</td>
<td>$S=90%$</td>
<td>274</td>
</tr>
<tr>
<td>$\mu^+\mu^-\pi^+\pi^-$</td>
<td>$< 3.6 \times 10^{-4}$</td>
<td>$S=90%$</td>
<td>161</td>
</tr>
<tr>
<td>$\pi^+\gamma\pi^-\gamma$</td>
<td>$< 3.6 \times 10^{-4}$</td>
<td>$S=90%$</td>
<td>113</td>
</tr>
<tr>
<td>$\pi^+\gamma\pi^-\gamma$</td>
<td>$< 1.7 \times 10^{-4}$</td>
<td>$S=90%$</td>
<td>256</td>
</tr>
<tr>
<td>$\pi^+\gamma\pi^-\gamma$</td>
<td>$< 2.1 \times 10^{-3}$</td>
<td>$S=90%$</td>
<td>236</td>
</tr>
<tr>
<td>$\pi^+\gamma\pi^-\gamma$</td>
<td>$< 5.6 \times 10^{-4}$</td>
<td>$S=90%$</td>
<td>174</td>
</tr>
<tr>
<td>$\pi^0\mu^+\mu^-$</td>
<td>$< 3.6 \times 10^{-4}$</td>
<td>$S=90%$</td>
<td>210</td>
</tr>
</tbody>
</table>

Charge conjugation (C), Parity (P), Charge conjugation \times Parity (CP), or Lepton Family number (LF) violating modes

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^0\gamma$</td>
<td>< 9</td>
<td>$\times 10^{-5}$</td>
<td>CL=90%</td>
<td>257</td>
<td></td>
</tr>
<tr>
<td>$\pi^+\pi^-$</td>
<td>< 9</td>
<td>$\times 10^{-5}$</td>
<td>CL=90%</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>$2\pi^0$</td>
<td>< 9</td>
<td>$\times 10^{-5}$</td>
<td>CL=90%</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>$3\pi^0\gamma$</td>
<td>< 9</td>
<td>$\times 10^{-5}$</td>
<td>CL=90%</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>3γ</td>
<td>< 9</td>
<td>$\times 10^{-5}$</td>
<td>CL=90%</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>$4\pi^0$</td>
<td>< 9</td>
<td>$\times 10^{-7}$</td>
<td>CL=90%</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>$\pi^0\gamma\gamma$</td>
<td>[f]</td>
<td>< 9</td>
<td>$\times 10^{-5}$</td>
<td>CL=90%</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^0\gamma\gamma$</td>
<td>[f]</td>
<td>< 9</td>
<td>$\times 10^{-6}$</td>
<td>CL=90%</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^0\mu^+\mu^-$</td>
<td>[f]</td>
<td>< 9</td>
<td>$\times 10^{-5}$</td>
<td>CL=90%</td>
<td>257</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\pi^0\mu^+\mu^-$</td>
<td>[f]</td>
<td>< 9</td>
<td>$\times 10^{-6}$</td>
<td>CL=90%</td>
<td>210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12
43. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS

Note: A square-root sign is to be understood over every coefficient, e.g., for $-8/15$ read $-\sqrt{8/15}$.

<table>
<thead>
<tr>
<th>$1/2 \times 1/2$</th>
<th>1/2</th>
<th>1/2</th>
<th>1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>+1/2</td>
<td>+1/2</td>
<td>+1/2</td>
</tr>
<tr>
<td></td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>-1/2</td>
<td>-1/2</td>
<td>-1/2</td>
</tr>
</tbody>
</table>

$Y^0_1 = \sqrt{\frac{3}{4\pi}} \cos \theta$

$Y^1_1 = -\sqrt{\frac{3}{8\pi}} \sin \theta e^{i\phi}$

$Y^1_0 = \sqrt{\frac{5}{4\pi}} (\frac{3}{2} \cos^2 \theta - \frac{1}{2})$

$Y^2_0 = -\frac{15}{8\pi} \sin \theta \cos \theta e^{i\phi}$

$Y^2_1 = \frac{\sqrt{15}}{2\pi} \sin^2 \theta e^{2i\phi}$

$Y^2_2 = \sqrt{\frac{15}{2\pi}} (2 \cos \theta - 1)$

$\langle j_1 j_2 m_1 m_2 | j_1 j_2 JM \rangle = (-1)^{j_1-j_2} (j_2 j_1 m_2 m_1 | j_2 j_1 JM \rangle$
4.2 Method: Representation of the amplitude

- **Decomposition** of the amplitude as a function of isospin states

\[M(s,t,u) = M_0(s) + (s-u)M_1(t) + (s-t)M_1(u) + M_2(t) + M_2(u) - \frac{2}{3}M_2(s) \]

- **Fuchs, Sazdjian & Stern’93**
- **Anisovich & Leutwyler’96**

- \(M_I \) isospin \(I \) rescattering in two particles

- Amplitude in terms of S and P waves exact up to NNLO (\(\mathcal{O}(p^6) \))

- Main two body rescattering corrections inside \(M_I \)

- Functions of only one variable with only right-hand cut of the partial wave

\[\text{disc} \left[M_I(s) \right] = \text{disc} \left[f^I_{\ell}(s) \right] \]

- **Elastic unitarity** \(\text{Watson’s theorem} \)

\[\text{disc} \left[f^I_{\ell}(s) \right] \propto t^*_\ell(s)f^I_{\ell}(s) \]

with \(t_\ell(s) \) partial wave of elastic scattering
4.4 Dispersion Relations for the $M_I(s)$

- Elastic Unitarity

$$\text{disc}[M_I] = \text{disc}[f^I_1(s)] = \theta(s - 4M^2_\pi)\left[M_I(s) + \hat{M}_I(s) \right] \sin \delta^I_1(s) e^{-i\delta^I_1(s)}$$

δ^I_1 phase of the partial wave $f^I_1(s)$

- Watson theorem: elastic $\pi\pi\pi$ scattering phase shifts

- Solution: Inhomogeneous Omnès problem

$$M_0(s) = \Omega_0(s) \left(\alpha_0 + \beta_0 s + \gamma_0 s^2 + \frac{s^3}{\pi} \int_0^\infty ds' \frac{\sin \delta^0_0(s') \hat{M}_0(s')}{\Omega_0(s')(s' - s - i\epsilon)} \right)$$

Omnès function

Similarly for M_1 and M_2
3.3 Dispersion Relations for the $M_I(s)$

- Unitary relation for $M_I(s)$:

$$\text{disc } M_I(s) = 2i \left(M_I(s) + \right) t^*_{\pi\pi\rightarrow\pi\pi}(s) \rho(s) \theta\left(s - 4M^2_\pi\right)$$

Elastic Unitarity

- Right-hand cut only Omnès problem

$$M_I(s) = P_I(s) \Omega_I(s)$$

$$\left[\Omega_I(s) = \exp\left(\frac{s}{\pi} \int_0^\infty ds' \frac{\delta_I(s')}{s'(s' - s - i\epsilon)}\right) \right]$$

- Watson’s theorem in the elastic region: Inputs needed: S and P-wave phase shifts of $\pi\pi$ scattering

Emilie Passemard
Inputs: $\pi\pi$ scattering

- S wave

- P wave

$\pi\pi$ phase shifts extracted combining all experimental results solving Roy equations → A large number of theoretical analyses Ananthanarayan et al’01, Colangelo et al’01, Descotes-Genon et al’01, Garcia-Martin et al’09,’11, Colangelo et al.’11 and all agree
3.3 Dispersion Relations for the $M_I(s)$

- Unitary relation for $M_I(s)$:

$$\text{disc } M_I(s) = 2i \left(M_I(s) + \hat{M}_I(s) \right) \sin \delta_I(s) e^{-i\delta_I(s)} \theta(s - 4M^2_\pi)$$

right-hand cut

left-hand cut

- Dispersion relation for the M_I's

$$M_I(s) = \Omega_I(s) \left(P_I(s) + \frac{s^n}{\pi 4M^2_\pi} \int_{4M^2_\pi}^\infty ds' \frac{\sin \delta_I(s') \hat{M}_I(s')}{\Omega_I(s')} \left(s' - s - i\varepsilon \right) \right)$$

Omnès function

- $\hat{M}_I(s)$: singularities in the t and u channels, depend on the other $M_I(s)$

Crossed-channel scattering between s-, t-, and u-channel

Angular averages of the other functions

Coupled equations

Khuri & Treiman’60
Aitchison’77
Anisovich & Leutwyler’98
Hat functions

• Subtract $M_1(s)$ from the partial wave projection of $M(s,t,u)$

\[
\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s-s_0)\langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle z M_1 \rangle
\]

Non trivial angular averages need to deform the integration path to avoid crossing cuts.

Generates complex analytic structure (3-particle cuts)

Anisovich & Anselm’66
1.4 Determination of the form factors: $F_\pi(s)$

- Cauchy Theorem: build the FF in the entire phase space

\[
F(s) = \frac{1}{2i\pi} \oint_C \frac{F(s')}{(s'-s)} ds' \\
= \frac{1}{\pi} \int_{s_{th}}^{\Lambda^2} ds' \frac{\text{disc}(F(s))}{s'-s-i\varepsilon} + \frac{1}{2i\pi} \oint_{s=|\Lambda^2|} ds' \frac{F(s')}{s'-s}
\]

As $\Lambda \to \infty$

\[
F(s) = \frac{1}{\pi} \int_{4M^2_\pi}^{\infty} \frac{\text{disc}[F(s')]}{s'-s-i\varepsilon} ds'
\]

Dispersion Relation
4.4 Dispersion Relations for the $M_I(s)$

- Similarly for M_1 and M_2
 - Four subtraction constants to be determined: α_0, β_0, γ_0 and one more in $M_1 (\beta_1)$
 - Inputs needed for these and for the $\pi\pi$ phase shifts δ^I_ℓ
 - M_0: $\pi\pi$ scattering, $\ell=0$, $I=0$
 - M_1: $\pi\pi$ scattering, $\ell=1$, $I=1$
 - M_2: $\pi\pi$ scattering, $\ell=0$, $I=2$
 - Solve dispersion relations numerically by an iterative procedure
3.4 Iterative Procedure

set M_i to tree-level

calculate \hat{M}_i from M_i

calculate M_i from \hat{M}_i

accuracy reached?

Yes

done

No

fix subtraction constants
3.5 Subtraction constants

- Extension of the numbers of parameters compared to *Anisovich & Leutwyler’96*

\[P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3 \]
\[P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2 \]
\[P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 \]

- In the work of *Anisovich & Leutwyler’96* matching to one loop ChPT
 Use of the SU(2) x SU(2) chiral theorem
 ➡️ The amplitude has an *Adler zero* along the line s=u

- Now data on the Dalitz plot exist from KLOE, WASA and MAMI
 ➡️ Use the data to directly fit the subtraction constants

- Solution *linear* in the *subtraction constants* *Anisovich & Leutwyler’96*

\[M(s,t,u) = \alpha_0 M_{\alpha_0} (s,t,u) + \beta_0 M_{\beta_0} (s,t,u) + \ldots \]
 ➡️ makes the fit much easier
Experimental measurements

- Dalitz plot measurement: Amplitude expanded in X and Y around X=Y=0

\[
|A(s,t,u)|^2 = \Gamma(X,Y) = N \left(1 + aY + bY^2 + dX^2 + fY^3\right)
\]

\[
X = \frac{\sqrt{3} (T_+ - T_-)}{Q_c} = \frac{\sqrt{3}}{2M\eta Q_c} (u - t)
\]

\[
Y = \frac{3T_0}{Q_c} - 1 = \frac{3}{2M\eta Q_c} \left(\left(M\eta - M_{\pi^0}\right)^2 - s\right) - 1
\]

with \(T_i\): kinetic energy of \(\pi^i\) in the \(\eta\) rest frame

and \(Q_c \equiv T_0 - T_+ - T_- = M\eta - 2M_{\pi^+} - M_{\pi^0}\)
Experimental measurements: Charged channel

- Charged channel measurements with high statistics from KLOE and WASA
 - e.g. **KLOE**: $\sim 1.3 \times 10^6 \eta \rightarrow \pi^+ \pi^- \pi^0$ events from $e^+e^- \rightarrow \phi \rightarrow \eta \gamma$

 \[
 \left| A_c(s,t,u) \right|^2 = N \left(1 + aY + bY^2 + dX^2 + fY^3 \right)
 \]

\[\begin{align*}
 Y &= \frac{3}{2M_\eta Q_c} \left(\left(M_\eta - M_{\pi^0} \right)^2 - s \right) - 1 \\
 X &= \frac{\sqrt{3}}{2M_\eta Q_c} (u - t)
\end{align*}\]
Experimental measurements : Neutral channel

- Neutral channel measurements with high statistics from MAMI-B, MAMI-C and WASA e.g. MAMI-C: \(\sim 3 \times 10^6 \eta \rightarrow 3\pi^0 \) events from \(\gamma p \rightarrow \eta p \)

\[
\left| A_n(s,t,u) \right|^2 = N \left(1 + 2\alpha Z + 6\beta Y \left(\frac{X^2 - Y^2}{3} \right) + 2\gamma Z^2 \right)
\]

Extraction of the slope:

\[
Z = \frac{2}{3} \sum_{i=1}^{3} \left(\frac{3T_i}{Q_n} - 1 \right)^2 = X^2 + Y^2
\]

\[
Q_n \equiv M_\eta - 3M_{\pi^0}
\]

\[
X = \sqrt{3} \frac{(T_+ - T_-)}{Q_c} = \sqrt{3} \frac{(u - t)}{2M_\eta Q_c}
\]

\[
Y = \frac{3T_0}{Q_c} - 1 = \frac{3}{2M_\eta Q_c} \left(\left(M_\eta - M_{\pi^0} \right)^2 - s \right) - 1
\]
Experimental measurements: Neutral channel

- Neutral channel measurements with high statistics from **MAMI-B, MAMI-C** and **WASA** e.g. **WASA**: \(\sim 1.2 \times 10^5 \ \eta \rightarrow 3\pi^0\) events from \(pp \rightarrow \eta pp\)

\[
|A_n(s, t, u)|^2 = N \left(1 + 2\alpha Z + 6\beta Y \left(X^2 - \frac{Y^2}{3}\right) + 2\gamma Z^2\right)
\]

![Graph](image)

\(\alpha = -0.027 \pm 0.008\) (stat) \(\pm 0.005\) (syst)

Cusp effect

Gullstrom, Kupsc, Rusetsky’09

WASA’09

\[
X = \frac{3}{2M_\eta Q_c} \left(\frac{T_+ - T_-}{Q_c}\right) = \frac{\sqrt{3}}{2M_\eta Q_c} (u - t)
\]

\[
Y = \frac{3T_0}{Q_c} - 1 = \frac{3}{2M_\eta Q_c} \left(\left(M_\eta - M_{\pi^0}\right)^2 - s\right) - 1
\]
3.4 Subtraction constants

- As we have seen, only Dalitz plots are measured, *unknown normalization!*

\[A(s,t,u) = -\frac{1}{Q^2} \frac{M_K^2}{M^2} \frac{M_K^2 - M^2}{3\sqrt{3}F^2}s^3 M(s,t,u) \]

\(Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} \)

To determine Q, one needs to know the normalization

- For the normalization one needs to use ChPT

- The subtraction constants are

\[P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3 \]

\[P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2 \]

\[P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 \]

Only 6 coefficients are of physical relevance
3.4 Subtraction constants

- The subtraction constants are

\[P_0(s) = \alpha_0 + \beta_0 s + \gamma_0 s^2 + \delta_0 s^3 \]
\[P_1(s) = \alpha_1 + \beta_1 s + \gamma_1 s^2 \]
\[P_2(s) = \alpha_2 + \beta_2 s + \gamma_2 s^2 \]

Only 6 coefficients are of physical relevance

- They are determined from
 - Matching to one loop ChPT \(\Rightarrow \) \(\delta_0 = \gamma_1 = 0 \)
 - Combine ChPT with fit to the data \(\Rightarrow \) \(\delta_0 \) and \(\gamma_1 \) are determined from the data

- Matching to one loop ChPT: Taylor expand the dispersive \(M_1 \)
 - Subtraction constants \(\Leftrightarrow \) Taylor coefficients
Dispersive approach

- Dispersion Relations: extrapolate ChPT at higher energies
 - Important corrections in the physical region taken care of by the dispersive treatment!
4.3 Qualitative results of our analysis

- Plot of Q versus α:

- All the data give consistent results. The preliminary outcome for Q is intermediate between the lattice result and the one of Kastner and Neufeld.

NB: Isospin breaking has not been accounted for.

From kaon mass splitting:

$$Q = 20.7 \pm 1.2$$

Kastner & Neufeld’08
Isospin violating process possibility to extract the quark mass ratio Q:

$$\Gamma_{\eta \to 3\pi} \propto \int |A(s,t,u)|^2 \propto Q^{-4}$$

$$Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} \left[\hat{m} \equiv \frac{m_d + m_u}{2} \right]$$

$$A(s,t,u) = \frac{N}{Q^2} M(s,t,u)$$

- $M(s,t,u)$ determined through the dispersive analysis of the data but for N one has to rely on ChPT

Analysis for JPAC by P. Guo, I. Danilkin, D. Schott et al’15 using WASA data

$Q = 21.4 \pm 0.4$ Analysis of CLAS data

G. Colangelo, S. Lanz, H. Leutwyler, E.P., in progress

dispersive (Walker)
dispersive (Kambor et al.)
dispersive (Kampf et al.)$
\chi$PT $O(p^4)$
χPT $O(p^6)$

no Dashen violation with Dashen violation

lattice (FLAG average)
dispersive, one loop
dispersive, fit to KLOE

Preliminary
2.4 Results: quark mass ratios

\[Q^2 \equiv \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2} \]

- lattice
- intersection
- \(\eta \) decay (preliminary)

H.Leutwyler
5. Back-up
1.6 Chiral expansion

- Ex: $\eta \rightarrow \pi^+ \pi^- \pi^0 \Rightarrow A = A_2 + A_4 + A_6 + \ldots$

- Tree level $\mathcal{O}(p^2)$:

- Two loops $\mathcal{O}(p^6)$:

- A_2

- A_6
2.2 Extraction of Q

- Extraction of the quark masses:

\[\Gamma_{\eta \to 3\pi} \propto Q^{-4} |M|^2 \]

- Computed with dispersive methods and ChPT

Experiment:
- KLOE (Italy),
- MAMI (Germany),
- WASA (Sweden, Germany),
- CLAS (JLab, USA)

- Dispersive method: Take into account the $\pi\pi$ final state interactions

\[Q^2 \propto (m_u - m_d) \]
Discontinuities of the $M_I(s)$

- Ex: $\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s - s_0) \langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle z M_1 \rangle$

where $\langle z^n M_I \rangle(s) = \frac{1}{2} \int_{-1}^{1} dz \ z^n M_I(t(s, z))$, $z = \cos \theta$ scattering angle

Non trivial angular averages need to deform the integration path to avoid crossing cuts

Anisovich & Anselm’66
Discontinuities of the $M_I(s)$

- Ex: $\hat{M}_0(s) = \frac{2}{3} \langle M_0 \rangle + 2(s-s_0) \langle M_1 \rangle + \frac{20}{9} \langle M_2 \rangle + \frac{2}{3} \kappa(s) \langle z M_1 \rangle$

where $\langle z^n M_I \rangle(s) = \frac{1}{2} \int_{-1}^{1} dz \, z^n M_I(t(s,z))$, $z = \cos \theta$ scattering angle

Non trivial angular averages need to deform the integration path to avoid crossing cuts

Anisovich & Anselm’66
3.7 Comparison of values of Q

Fair agreement with the determination from meson masses