Classwork

Meson Quantum Numbers in the Quark Model

Consider a two particle system, the $q\bar{q}$ system, which in the quark model form the mesons. Denote the quark q as particle 1 and the antiquark \bar{q} as particle 2. The quarks have spin $s_q = \frac{1}{2}$, mass m_q, and intrinsic parity $\eta_q = +1$. Let the four momentum and spin projection for the quark q be p_1 and σ_1, and for the \bar{q} p_2, σ_2. A two quark system may be written in their center-of-momentum frame

\[|q(p_1, \sigma_1) \bar{q}(p_2, \sigma_2) \rangle \rightarrow |\hat{p}\sigma_1\sigma_2 \rangle \]

(1)

where $\hat{p} = (\theta, \varphi)$ is the orientation of q with respect to a defined coordinate system.

(1) In the LS coupling scheme, write the two particle state in the total angular momentum basis $|JM\ell s\rangle$.

(2) Determine the allowed quantum numbers for s, ℓ, and J.

(3) Using the action of the parity P and c-parity C operators on the state $|JM\ell s\rangle$, determine the allowed parity and c-parity quantum numbers P and C. Determine the allowed J^{PC} numbers for the $q\bar{q}$ system through $J = 3$. List the states through $J = 3$ that are not allowed, the so-called ‘exotic’ states.

\[P |JM\ell s\rangle = (-1)^{\ell+1} |JM\ell s\rangle \]

(2)

\[C |JM\ell s\rangle = (-1)^{\ell+s} |JM\ell s\rangle \]

(3)