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The paper provides technical details on the methods described in Jun Xu and J. Scott
Long (forthcoming) “Confidence Intervals for Predicted Outcomes in Regression Models for
Categorical Outcomes” The Stata Journal. These formula were incorporated into prvalue.
See www.indiana.edu/ ~jslsoc/spost.htm for further details.

1 General Formula

The delta method is a general approach for computing confidence intervals for functions of
maximum likelihood estimates. The delta method takes a function that is too complex for
analytically computing the variance, creates a linear approximation of that function, and
then computes the variance of the simpler linear function that can be used for large sample
inference.

We begin with a general result for maximum likelihood theory. Under standard regularity
conditions, if 3 is a vector of ML estimates, then

Jn (B _ 5) 4N [o,var (B)] . (1)

Let G (B) be some function, such as predicted probabilities from a logit or ordinal logit

~

model. The Taylor series expansion of G(3) is

G(B) = G(B)+(B-BYC(B)+(B-B)C"(B')(B-B)/2 2)
~ G(B)+(B-B)G'(B) .

where G'(8) and G”(3) are matrices of first and second partial derivatives with respect to
3, 3" is some value between 8 and 3. Then,

Vi |G(B) - G(B)| ~ V(B - BC'(B) 3)

~

This leads to leads to G(8) — N (G(,B), agé,ﬁ) Var(ﬁ)%?) (Greene 2000; Agresti 2002).

To estimate the variance, we evaluate the partials at the ML estimates, %g,'x) _, which
B=B

leads to

~
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Var (G(B)) =



For example, consider the logit model with

G(B)=Pr(y=1[x)=Ap) . (5)
To compute the confidence interval, we need the gradient vector
oG (B) _ [ OA('B) OAB) . OA(B) }’ (6)
B 9Bs 95, I '
Since A is a cdf, 8A6(E;B ) — a/g%a ) %’;5 = A (x'B8) zi. Then
oG /
%: [A(x’ﬂ) ANX'B)zy - )\(X,ﬁ)l‘[(} ) (7)

To compute the confidence interval for a change in the probability as the independent vari-
ables change from x, to x;, we use the function

G (B) = A(Blxa) — A (BIxs) (8)
where
9G(B) _ 9[A(BIxa) — A(BIxe)] (9)
op op
OA(Blxa) — OA(BIxs)
B B

Substituting this result into equation 4,

Var(G(e) = | var @Rl | - | Sy ) o)
OABIx) = IABIx)] | [OABx) = IA(BIx,)
- [ 8,6/ Var(ﬁ) 86 :| + { 63 Var(ﬁ) 86 :| :

We now apply these formula to the models for which prvalue computes confidence intervals.

2 Binary Models

In binary models, G(3) = Pr(y = 1 | x) = F(x'3) where F is the cdf for the logistic, normal,
or cloglog function. The gradient is

OF(xX'B) OF(X'B)ox'B
By, B ox'B 0B B

where f is the pdf corresponding to F'. For the vector x it follows that

fX'B)wi (11)

OF (x'B)
B

= f(x'B)x . (12)



From equation 4,

o~

Var [Pr(y =1[x)] = f(x'B8)xVar(B)xf(x'B)

= f(X/,B)2X,Va7“(B)X . (13)
The variances of Pr(y = 0 | x) and Pr(y = 0 | x) are the equal since
P o (14)
and —~
Var [Pr(y = 0 | x)] = [~ f(x'8)] X' Var(B)x . (15)
3 Ordered Logit and Probit
Assume that there are m = 1, .J outcome categories, where
Priy=m|x)=F (1, —X0B) — F(Tpn1 —x'B) for j=1,J. (16)
Since we assume that 79 = —oo and 75 = o0, F (1o —x'8) = 0 and F (7, —x'8) = 1. To
compute the gradient,
OF (T —X'B)  OF (T, —X'B) 0 (1, — X'B) (17
5 0.-xB) 05 )
= [ (Tm —x'B) (—xx) (18)
and
OF (Tp, —xX'B)  OF (15 —X'B) 0 (1, —X'B) (19)
T 0 (tm —X'B) T
It follows that aF )
(TgT; xB) =f(tm,—%XB)ifj=m (20)
and p )
F“g;XB)ZOifj;ém. (21)
Using these results with equation 16,
oP P = 7 / /
WX () ()~ s X)) (2)
= —apf (T —XB) = [f (1 —X'B)]
and
OPr(y; =m|x;) _ OF (tm —X'B)  OF (Tn—1 —X'B) (23)

ot or; or;
= f(tm—xXpB)ifj=m
= —f(tma—xB)ifj=m-1
= ( otherwise.
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For example, with three categories:

Priy=1|x) = F(r1—%xB)-0

Priy=2[x) = F(r2—xB)-F(r1—xPB)
Priy=3|x) = 1-F(r,—xp),
then
dPr (yéﬁ_kl X [f (11 =x'B)]
OPr(y; =2 | x)) = —a[f (ro —X'B) — f (11 — X'B)]
P
BPr(yéﬁ:kngi) = —zp[—f (2 —%x'B)] .

With respect to T,
OPr(y; =1]x)

o = f(n—xPB)
OPr(yi=1|x;) 0

87'2 -
aPr(yZ:2|xZ) . ,

87—1 - f(Tl Xﬂ)
OPr(y; =2 x;) B ,

87—2 - f<T2 X/B)
OPr(y; = 3| x) — 0

87'1 N
OPr(y; =3 | x;) — 0

(37'2 - .

To implement these procedures in Stata, we create the augmented matrices:

g=[8 mn - 7]

and
x; =[x 10 - 0]
xy =[x 01 - 0]
x5, =[x 00 - 1],
such that

x;/B"=1;—x0.

We then create the gradients described above.

4
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(37)



4 Generalized Ordered Logit!

The generalized ordered logit model is identical to the ordinal logit model except that the
coefficients associated with x differ for each outcome. Since there is an intercept for each
outcome, the 7’s are fixed to zero and B ; = 0 for identification. Then,

Priyi=1|x;) = F(-x8,) (39)
Pr(y,=m|x;) = F(—XB,)—F(-x'B,,_,) form=2,J-1 (40)
Pr(y,=J|x) = —F(—xB,_1) . (41)
The gradient with respect to the 5’s is
oF (_X,ﬁm) . /
Tm,k = [ (=x'B,,) (k) , (42)

while no gradient for thresholds is needed. Then,

OPr(y, =m | x;)

S = (XB,) [ (-X6,)] (43)
5 Multinomial Logit
Assuming outcomes 1 through J,
Pr(y = mpo) = 2 0Pl (44)
5 e ()
i=

where without loss of generality we assume that 3, = 0 to identify the model (and accord-
ingly, the derivatives below do not apply to the partial with respect to 3;). To simplify
notation, let A = exp (Xﬂj). The derivative of the probability of m with respect to 3,, is

0 Pr(y = m|x) _ dexp (x83,,) A™!

98, 93, )
Using the quotient rule,
OPr(y =m|x) [,k dexp(x0,,) OA]
8. = A 8. exp (x08,,) 8. A7 (46)
Examining each partial in turn.
Oexp (xB,) _ Oexp (xB,,) 0%B,, @)
= exp(x8,,)xiftm=n
= 0ifm#n

! Confidence intervals for the generalized ordered logit model are not supported in prvalue.
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and

J J
8; exp (xﬁj) > 0exp (xﬁj)

8.~ 0B, (48)

= exp(xB,)x

The last equality follows since the partial of exp (Xﬁj) with respect to 3,, is 0 unless j = n.
Combining these results. If m = n,

0Pr(y = m|x)

g5~ [BewxB)x—exp(xB,) x| A (49)
= [A exp (x03,,) — exp (xﬁm)ﬂ A"%x
_ [ep(Br)  exp (XB) exp (XB) |
A A A
= [Pr(y=m)—Pr(y=m)Pr(y=m)|x
= Pr(y=m)[l-Pr(y=m)]x.
For m # n,
T 0 e (x8,) exp (x8,) 6] 8 (50)
e (xB,) e (x8,)

A A
= Pr(y=m)Pr(y=n)x

For example, for two x’s and m =1 :
0Pr(y = m|x)

B = [pm(l_pm)xl Pm (L =pm)z2 pm (1 — pm) }/ (51)
8Pr8(?é;:b|x> = [ —pmba®1t —PmPuT2 —Pmpn | (52)

6 Poisson and Negative Binomial Regression

In the Poisson regression model,
11; = exp (x;08) (53)
so that
o dexp(xB)
9By, 9Py,
dexp(x'3) 0x'B
ox'3 Py,
= exp(X'B)zy

= 'ua’jk
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Using matrices,

Ou  Jexp(x'B)

s as
Jexp(x'B) 0x'3
ox'3 0B
= ux.

The probability of a given count is

exp (—p) p¥

Pr(ylx) = J

Y

so we can compute the gradient as:

Oexp (—p) p¥/y! 1 Oexp (—p) ¥ Ip
98, y! o 9Py,

Since the last term was computed above, we only need to derive

dexp (—p) ¥ o, 0exp(—p)
= exp (—p)yp’™t — p¥ exp (—p)
This leads to
8Pr (ylx) _ 1 y—1 Yy
G, y!u[eXp( 1) yp 1 exp (—p)]
_ op(=p)yp’ — pexp (—p)
_ - i
ypY — ot
= T .
exp (1) y!
Using matrices,
OPr(ylx) _ exp(=p)yp’ — " exp(=p)
ap y!
y _ ,y+1
Ly
exp (1) y!

The negative binomial model is specified as

po= exp(x'B+e)
= exp (x'B)exp(e) ,

(57)

(58)

(60)

(61)

where ¢ has a gamma distribution with variance a. The counts have a negative binomial

distribution

Pr (y ‘ X‘) — P(yz + V) v Y 122 v
Uyl Tw) \vtw) \vtp)
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where v = a1, The derivatives of the log-likelihood are given in Stata Reference, Version
8, page 10. To simplify notation, we define 7 = Ina, m = 1/a, p = 1/(1 4+ au), and
i = exp (x8). With ¢ (z) being the digamma function evaluated at z,

‘9“‘%};’"‘) — ply—p (63)
OB |2 (g v ) - oom)| (6

Then by the chain rule,
O0ln Pr (y|x) O0ln Pr (y|x) 0 Pr (y|x)

oxB OPr(yx) 0xB .
1 0P
= Pr (y'X) 1%7
r(yx) olnrr(y|x
T 3 Pr(y|x) . (66)
Similarly for 7,
OPr(y|x) _ dlnPr(ylx) ,, (ylx) (67)

or or
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