The Alexander module of a knot is the first homology of its infinite cyclic cover, viewed as a **Z**[t,t^{-1}] module. The Nakanishi Index is the minimal m such that this module is presented by an m by m matrix. (One presentation is given by v - tV^{t}, where V is a Seifert matrix, but this might not be the minimal size square presentation.)

The values given here are taken from the table in Kawauchi's book on knot theory, and were originally calculated in work of Nakanishi. Three values (for knots of fewer than 10 crossings) were unknown, and were since computed to all be 2 by Kearton and Wilson in *Knot modules and the Nakanishi index,* Proc. Amer. Math. Soc. **131** (2003), no. 2, 655--663

Further information on particular knots.