Status and perspectives of an RFQ based neutron facility in Italy

Enrico Fagotti
INFN – Legnaro National Laboratory

L. Antoniazzi, P. Colautti, M. Comunian, V. Conte,
J. Esposito, F. Grespan, A. Palmieri, A. Pisent,
C. Roncolato, C. Ceballos Sanchez

D. Moro, L. De Nardo

L. Evangelista, G. Sotti
Outline

- Project overview
- BNCT application
- High intensity accelerator status
 - Proton source
 - Low energy beam transport
 - RFQ
- Beryllium target and neutron beam shaping assembly
Project overview

An accelerator-driven high intensity neutron source at INFN-LNL
Main parameters

Accelerator type: LINAC
Proton current: up to 50 mA
Proton energy: 5 MeV
Time structure: up to CW
Beam power: up to 250 kW
Neutron converter: Be
Operative power density on Be target: 700 Watt/cm²
Neutron source intensity: 10^{14} s⁻¹
Main application: BNCT
Boron Neutron Capture Therapy (BNCT) is an experimental binary radiotherapy which exploits the neutron capture reaction $^{10}\text{B}(n,\alpha)^{7}\text{Li}$ induced by thermal neutrons ($<E> = 25 \text{ meV}$). The α-particle and ^{7}Li recoiling nucleus are high LET and short range (< mean cell diameter $\approx 10 \mu\text{m}$) particles able to deposit their energy entirely inside the ^{10}B loaded cell.

In this way the selectivity of BCNT depends on ^{10}B distribution and not on the irradiation field. This feature makes BNCT a valid option against the diffused tumors. Another crucial aspect for the good outcome of the treatment is the availability of ^{10}B carriers able to realize a selective delivery. The clinically approved molecules are BSH and BPA. Nowadays, the major challenge in BNCT research is the development of more dedicated carrieris.
BNCT at Pavia: the TAOrMINA method
(Trattamento Avanzato d’Organi Mediante Irraggiamento Neutronico e Autotrapianto)

The therapeutic concept is based on the irradiation of the isolated, previously 10BPA-infused organ in a neutron field where neutrons coming from all directions can irradiate the whole liver.

After BPA infusion the liver is removed from the patient body, washed and put into 2 teflon bags, and then put into a teflon container and irradiated into the reactor.

Two terminal patients affected with colon adenocarcinoma liver metastases were treated in Pavia with the TAOrMINA method between 2001 and 2003. In both cases, about 10 days after treatment the CT scanning evidenced the liver in normal condition while the adenocarcinoma metastases appeared in a necrotic state.

Figure 6. Sequence of CT images of the liver on a cranial (above) and a caudal (below) level in the first patient subjected to BNCT. Evolution at different times of the metastases towards necrosis with final substitution by normal hepatic tissue. (a): pre-operatively; (b): at 7 days, (c): at 6 months; (d): at 12 months after the procedure.
High Intensity Accelerator Status
Proton source

STATUS

- $I_p \approx 45$ mA
- $E = 80$ KeV
- $\varepsilon_{n,rms} < 0.1$ mm-mrad
- $\varphi_b(z = 200 \text{ mm}) = 34$ mm
- Beam time structure: CW

NEAR FUTURE

- $\varphi_b(z = 200 \text{ mm}) = 10$ mm
- [New extractor design] [LNL]
- Beam time structure: CW & pulsed
- [Magnetron pulser] [LNL & DEE/UPV]

PS developed at LNS (2000)

PS optimized at LNL with magnetic shielding (2007)
Low energy beam transport

Fast Emittance Scanner (FES): high resolution q-q' rms emittance in less than 2 seconds

LEBT developed at LNL

LEBT ready for assembly with solenoids, pumping system, non interceptive profile and current diagnostics, interceptive profiler and termination FC.

STATUS

NEAR FUTURE

Neutralized transport optimization
FGA development
LEBT control system upgrade
e-trap construction
RFQ: parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy In/Out</td>
<td>0.08/5.02</td>
<td>MeV</td>
</tr>
<tr>
<td>Frequency</td>
<td>352.2</td>
<td>MHz</td>
</tr>
<tr>
<td>Proton Current (CW)</td>
<td>50</td>
<td>mA</td>
</tr>
<tr>
<td>Emit. t. rms. in/out</td>
<td>0.20/0.21</td>
<td>mm-mrad</td>
</tr>
<tr>
<td>Emit. l. rms.</td>
<td>0.19</td>
<td>MeV-deg</td>
</tr>
<tr>
<td>RFQ length</td>
<td>7.13</td>
<td>m (8.4 λ)</td>
</tr>
<tr>
<td>Intervane Voltage</td>
<td>68</td>
<td>KV (1.8 Kilp.)</td>
</tr>
<tr>
<td>Transmission (Waterbag)</td>
<td>97.7</td>
<td>%</td>
</tr>
<tr>
<td>Q₀ (SuperFish)</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td>Q₀ (measured)</td>
<td>8100</td>
<td></td>
</tr>
<tr>
<td>Beam Loading</td>
<td>0.148</td>
<td>MW</td>
</tr>
<tr>
<td>RF Power dissipation</td>
<td>0.847</td>
<td>MW</td>
</tr>
</tbody>
</table>

- 3 electromagnetic segments 2.4 meters long
- 2 resonant coupling cells + dipole stabilizers
- each segment consists of two 1.2 meters long modules (basic construction units)
RFQ: fabrication history...

... and some troubles
RFQ: fabrication complete
RFQ: tuning

2010. Low power RF measurements.
- Field and frequency tuning with aluminum couplers
- Copper Tuners and Copper End Plates with RF contacts
- $Q_0=8100$ (SF 9900)
- Final High Power Coupler design (3D HFSS simulations) and Coupler Production
RFQ: ancillaries

2010/2011. All Ancillaries for High Power Test ready and tested
High technology part (RFQ cavity, RF distribution, local cooling/tuning system, local control system) was developed.

Conventional installation (Klystron and conventional power supplies, secondary cooling system, building) is required.

According to an agreement between INFN and CEA, couplers and RFQ are under high power test at Saclay.
RFQ: RF coupler high power test

March 2011
10 kW couplers test

June 2011
150 kW couplers test

LNL

CEA Saclay

RF Amplifier

Bridge Cavity

load water cooled
Coupler high power test results (1st July update)
RFQ: high power test

RFQ high power test stand is under construction. First test foreseen after summer.

Milestones:
• 1° Segment RFQ test \(\rightarrow 300 \text{ kW} \)
• Check of the water cooling/tuning system
The Be proton-neutron converter

1. Be-tile brazed cooling pipes with Zr adapters
2. Zr cooling system manifold & collector plates
3. Collector plates welding & EDM manufacturing process
4. Half target: final assembling ready for e-beam test
The Be target test result summary

<table>
<thead>
<tr>
<th>Test type</th>
<th>Test performed</th>
<th>Main test results</th>
<th>Test passed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal-mechanical</td>
<td>Number of cycles: 2350 ~ 10 times higher than requested (200)</td>
<td>• No any visible damage</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• No cracks observed at metallographic analyses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reliability better than expected</td>
<td></td>
</tr>
<tr>
<td>Radiation damage: neutron</td>
<td>Proper neutron fluence levels (10^{18}-10^{20} \text{ cm}^{-2})</td>
<td>• Material hardening level half than expected</td>
<td>YES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mechanical properties not compromised even at higher dose levels (~0.1 dpa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• He bubbles generation observed at higher dose levels only (~0.08 dpa)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Lifetime estimation: 3100 hrs (doubled) with respect to design parameters (1600 hrs) =1yr</td>
<td></td>
</tr>
<tr>
<td>Radiation damage: proton</td>
<td>Preparation of experimental set-up</td>
<td>In progress</td>
<td></td>
</tr>
</tbody>
</table>
The Beam Shaping Assembly modeling

In-air beam port quality design requirements

\[
\begin{align*}
\phi_{n \text{ th}} (\leq 0.5 \text{ eV}) & \geq 10^9 [\text{cm}^{-2} \text{s}^{-1}] \\
\phi_{n \text{ th}} / \phi_{n \text{ total}} & \geq 0.90 \\
D_{n \text{ epi+fast}} / \phi_{n \text{ th}} & \leq 2 \cdot 10^{-13} [\text{Gy cm}^2] \\
D_\gamma / \phi_{n \text{ th}} & \leq 2 \cdot 10^{-13} [\text{Gy cm}^2]
\end{align*}
\]

Current Status of BNCT. IAEA-TECDOC-1223, IAEA. May 2001
Be(p,xn) neutron yielding and spectra at E = 5 MeV

The only one experimental measurements available so far ……TOF technique, MIT (2000)

Total neutron yield measured at Ep = 4 MeV:
Neutron source gain factor expected at Ep = 5 MeV \(\cong 2.8 \) → \(Y_n \approx 2.9 \cdot 10^{12} \, \text{s}^{-1}\text{mA}^{-1} \)
Ep=5 MeV Be(p,xn) thick target neutron spectra measurements at the 6 MeV Van de Graaff accelerator at LNL new p-recoil detector (Milan Polytechnic)

Be(p,xn) neutron spectra comparison with at 0 deg

Be(p,xn) all measured neutron spectra

POLIMI - Silicon Telescope
Be(p,xn) Ep= 5 MeV total neutron Yield measured $Y_n(4\pi) = 3.05 \cdot 10^{12} \text{s}^{-1}\text{mA}^{-1}$

Neutron source level expected with TRASCO RFQ + Be target → Sn $\sim 1.05 \cdot 10^{24} \text{s}^{-1}$
BSA identical to the alternative configuration developed with Be\((p,xn)\) spectra at 4 MeV, but for the \(D_2O\) moderator region thickness "a" increased by just 1 cm. Same reflector sizes.
MCNPX calculation results

Neutron Fluence-to-kerma conversion factors from ICRU-63

Gamma Fluence-to-kerma conversion factors from ICRU-46

Total measured neutron yield \(\sim 3.05 \cdot 10^{12} \, \text{s}^{-1} \cdot \text{mA}^{-1} \)

Agosteo et al., 2010. Proc. of ICNCT-14, Argentina (2010)

<table>
<thead>
<tr>
<th></th>
<th>(\Phi_{\text{th}} (E \leq 0.5 , \text{eV})) (\text{(cm}^2\text{s}^{-1}))</th>
<th>(\Phi_{\text{th}} / \Phi_{\text{total}})</th>
<th>(K_{\text{n th}}) (\text{(Gy} \cdot \text{h}^{-1}))</th>
<th>(K_n \text{ epi-fast}) (\text{(Gy} \cdot \text{h}^{-1}))</th>
<th>(K_{\gamma} / K_n \text{ tot})</th>
<th>(K_n \text{ (E>0.5 , \text{eV})} / \Phi_{\text{th}} \text{ (Gy} \cdot \text{cm}^2))</th>
<th>(K_{\gamma} / \Phi_{\text{th}} \text{ (Gy} \cdot \text{cm}^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAEA TECDOC-1223 ref. parameters</td>
<td>> 1.0E+09</td>
<td>> 0.90</td>
<td></td>
<td></td>
<td></td>
<td>(\leq 2.0\text{E-13})</td>
<td>(\leq 2.0\text{E-13})</td>
</tr>
<tr>
<td>MCNPX results</td>
<td>4.30E+09</td>
<td>0.96</td>
<td>2.53</td>
<td>0.51</td>
<td>1.42</td>
<td>0.46</td>
<td>0.33E-13</td>
</tr>
</tbody>
</table>
Neutron & gamma dose beam port wall mapping

Thermal neutrons (E ≤ 0.5 eV)

Epithermal neutrons (0.5 eV ≤ E ≤ 10 keV)

Fast neutrons (E > 10 keV)

Prompt gammas
Conclusion

- Proton source upgrade & LEBT completion is possible in the framework of TRASCO-3 project

- High power coupler test was successful at nominal power. We plan to reach 130% of nominal power (end of this month)

- RFQ passed all low power tests

- Two important points remain:
 - RFQ high power test (September - December 2011)
 - Converter proton irradiation test (next year)

In the mean time…

- A consortium between INFN, Pavia University and SOGIN was born two months ago to provide the project with necessary funds for completion