1. Motivation and definition
2. SME related cases: Flat-space limit
3. Curved space example -- b-space
4. Some notes on H space (in preparation)

Classical Kinematics for Lorentz Violation, Kostelecký, NR,

Riemann-Finsler Geometry and Lorentz-Violating Kinematics, Kostelecký,

Neil Russell
Northern Michigan University

IUCSS Summer School on the Lorentz- and CPT-violating Standard-Model Extension
Indiana University, Bloomington, June 3-9, 2012
The interval of a path: \(S' = \int_{A}^{B} d\tau \)

What path is the ‘shortcut’?

The solutions are geodesics

\[
\dot{x}^\mu = -\Gamma^\mu_{\alpha\beta} \dot{x}^\alpha \dot{x}^\beta
\]
Lagrangian function

Using metric $g_{\mu\nu}$ with signature $(-, +, +, + \ldots)$

"pseudo-Riemann metric"

\[
d\tau = \sqrt{-x^2} \, d\lambda = \sqrt{-\frac{dx^\mu}{d\lambda} \, g_{\mu\nu}(x) \frac{dx^\nu}{d\lambda}} \, d\lambda = \sqrt{-u^\mu \, g_{\mu\nu}(x) \, u^\nu} \, d\lambda
\]

So action $S = \int_{A \rightarrow B} \sqrt{-g(x) \, u} \, d\lambda$

$L = \int_{A \rightarrow B} L(x, u) \, d\lambda$

$x^\mu = \text{position}$

$u^\mu = \text{velocity}$
i) We need timelike curves to ensure

\[-uu \geq 0\]

ii) The action S is independent of the choice of curve parameter λ. This can be ensured if L is homogeneous of degree 1 in u^μ.

ie if $L(x, ku) = kL(x, u), \quad k > 0$.

Equivalently: $\frac{\partial L}{\partial u^\mu} u^\mu = L$ Euler's theorem

$\Rightarrow L = -p_\mu u^\mu$ canonical momentum p_μ.

iii) $L \geq 0$ since we take the positive square root.
(iv) Tangent spaces in pseudo-Riemann geometry are isotropic.

No preferred spacetime direction

⇒ Local Lorentz invariance
(v) We can recover the metric $r_{\mu \nu}(x)$ from $L(x, u)$:

Differentiate once,

$$\frac{2}{\partial u^\nu} L^2 = \frac{2}{\partial u^\nu} (-u u^\nu) = -2 u^\mu r_{\mu \nu}$$

twice:

$$\frac{2}{\partial u^\mu} \frac{2}{\partial u^\nu} L^2 = \frac{2}{\partial u^\mu} (-2 u^\mu r_{\mu \nu}) = -2 r_{\mu \nu}$$

$$\implies \quad r_{\mu \nu}(x) = -\frac{1}{2} \frac{2}{\partial u^\mu} \frac{2}{\partial u^\nu}(L^2)$$

Why not...

\[M, \ r_{\mu \nu}(x) \]
\[\text{REPLACE} \]
\[M, \ L(x, u) \]
Explicit symmetry breaking

Obtaining r^μ_ν from a Lagrange function suggests a method for introducing explicit symmetry breaking:

→ introduce a vector field $a_\mu(x)$
to the manifold

(* or a tensor field)

→ add it to the Lagrange function as a scalar, e.g.

$$L(x, u) = \sqrt{-uu^\nu} + a_\mu u^\mu$$

→ The derived metric $g^\mu_\nu(x, u) \equiv -\frac{1}{2} \frac{2}{\partial u^\mu} \frac{2}{\partial u^\nu}(L^2)$

→ Riemann–Finsler geometry contains these ideas
Definition

Manifold M with points $x \in M$.

"Smooth:" i.e. C^∞ around.

Vector y at point x lies in tangent space $T_x M$ at x.

Vector magnitudes, angles set by Riemann metric $g_{jk}(x)$.

"Finsler structure" a real-valued function $F(x,y)$ such that

(a) Non-negative: $F(x,y) \geq 0$

(b) Smooth: F is C^∞ on $TM \setminus \{\text{excluded slits}\}$

(c) Homogeneous of degree 1 in y. $F(x,\lambda y) = \lambda F(x,y) \quad \forall \lambda > 0$

(d) Positive definite $g_{jk}: g_{jk} = \frac{1}{2} \partial_y y_j \partial_y y_k F^2$

Finsler manifold: a manifold M with a Finsler structure F.
<table>
<thead>
<tr>
<th>Notation and terminology</th>
<th>Riemann–Finsler</th>
<th>pseudo-Riemann Finsler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>(n)</td>
<td>(n+1)</td>
</tr>
<tr>
<td>coordinates</td>
<td>(x^j) (j = 1, \ldots, n)</td>
<td>(x^\mu) (\mu = 0, 1, \ldots, n)</td>
</tr>
<tr>
<td>velocity</td>
<td>(y^j = \frac{dx^j}{d\lambda})</td>
<td>(u^\mu = \frac{dx^\mu}{d\gamma})</td>
</tr>
<tr>
<td>structure</td>
<td>(F(x,y))</td>
<td>(L(x,u))</td>
</tr>
<tr>
<td>underlying metric</td>
<td>(r_{ijk}) (\text{pos def.})</td>
<td>(r_{\mu\nu}) (\rightarrow (-,+,+,+,...))</td>
</tr>
<tr>
<td>metric</td>
<td>(g^{jk})</td>
<td>(g_{\mu\nu})</td>
</tr>
<tr>
<td>norm</td>
<td>(| y | = \sqrt{y^j r_{jk} y^k} = \sqrt{y^2})</td>
<td>For timelike (u), (| u | = \sqrt{-u^2})</td>
</tr>
</tbody>
</table>

Properties

- all vectors are "timelike"
 - \(y^2 > 0 \)
- distinct categories
 - timelike ±
 - spacelike ±
 - lightlike ±

\[u^2 < 0 \]
Homogeneity

Some points

Euler's theorem: \(F \) homog of degree \(n \)

\[
y^{\frac{\partial}{\partial y_j}} F(y) = n F(y)
\]

Results include

* \(\partial y_j F \) reduces homogeneity by 1
* \(F \) of degree \(n \), \(G \) of degree \(m \)

\[
\Rightarrow FG \text{ of degree } n + m
\]

Example functions using \(\vec{y} = (y, y') \)

\[
F(y, y') = \sqrt{y^2 - 3yy' + y'^2} \quad \text{has degree 1}
\]

\[
F(y, y') = \frac{y}{y'} \quad \text{has degree 0}
\]

Exercise

Show that \(F = \sqrt{y g yy'} \) \((F \text{ has degree 1}) \)

\[
g_{jk} = \frac{1}{2} \partial y_j \partial y_k F^2
\]
Solution

\[y^g y^j = \frac{1}{2} y^k y^j \partial_y \left[\partial_{y_k} F^2 \right] \quad \text{degree 1} \]

\[= \frac{1}{2} y^k \partial_{y_k} \left[F^2 \right] \quad \text{degree 2} \]

\[= \frac{1}{2} \partial_{y_k} F^2 \]

\[= \frac{1}{2} 2 F^2 \]

\[\Rightarrow y^g y^j = F^2 \]

\[\Rightarrow \sqrt{y^g y^j} = F \quad (g_{jk} \text{ is pos. def.}) \]
Which Finsler structures are related to the SME?

Curvature:
- $L = \sqrt{(b \cdot u)^2 - b^2 u^2}$
- $L = b \mu e^a \delta_5 \delta^a$

Curved

Flat

Curvature relation:
- $\eta_{\mu \nu} = r_{\mu \nu}(x)$
- $\eta_{\mu \nu} \rightarrow r_{\mu \nu}(x)$

Dispersion relation:
- Free-particle wave packet
- Classical free particle
On a small enough region, the background is uniform.

\Rightarrow Minkowski SME
Dispersion relation

Idea: seek a classical Lagrange function $L(x,u)$ producing the same dispersion relation as that for the fermion sector.

Conventional dispersion is $p^2 = m^2$, quadratic in p^ν, can write $E^2 = m^2 + \vec{p}^2$ or $R(m; p_\nu) = 0$

Full result for minimal SME terms is known:

$$R(m, a_\nu, b_\nu, c_{\mu\nu}, d_{\mu\nu}, e_\nu, f_\nu, H_{\mu\nu}, g_{\mu\nu}; p_\nu) = 0$$

Special cases

$$(p - a)^2 - m^2 = 0$$

$$(-p^2 + b^2 + m^2)^2 - 4(b \cdot p)^2 + 4(b \cdot p)^2 = 0$$

$$p(\delta + 2c + c^T c)p - m^2 = 0$$

Kostelecký and Lehnert, PRD 63, 065008 (2001)
Method for finding $L(x, u, \lambda)$

Note the following requirements on $L(x, u, \lambda)$

a) Energy and momentum conservation in flat space
 $\Rightarrow L$ can't depend on x^μ

b) L must be independent of the choice of path parameter
 $\Rightarrow L$ can't depend on λ

 and, $L = \frac{\partial L}{\partial u^\mu} u^\mu \Rightarrow L = -p^\mu u^\mu$ (homogeneity)

Conditions derived from the dispersion relation:

$$R(m_j, a_\nu, b_\nu \ldots ; p^\mu) = 0$$

c) Group velocity $\partial p_\nu / \partial p_k$ must match classical velocity u^k / u^0

$$u^k / u^0 = -\frac{\partial p_\nu}{\partial p_k} \quad k = 1, 2, 3$$

Five algebraic equations in 9 variables: L, p^μ, u^μ.

Use 4 to eliminate p_ν: $P(L, u^\mu, m_j, a_\nu, b_\nu \ldots) = 0$

Roots $L(u)$ of polynomial P are candidate Lagrange functions.
Conventional free particle

\[\vec{p} \quad \text{energy} \]

\[m \]

Dispersion relation: \[p_0^2 - p_1^2 = m^2 \] (in 1+1 space) \((x^0, x^1)\)

\[\Rightarrow \text{Find } L(u^0, u^1) \]

Additional conditions:

\[\frac{u^1}{u^0} = -\frac{\partial p_0}{\partial p_1} \quad \text{velocity} \]

\[L = -p_0 u^0 - p_1 u^1 \quad \text{homogeneity} \]

Counting: 3 equations, 5 variables \((u^0, u^1, p_0, p_1, L)\)

\[\Rightarrow 1 \text{ equation, 3 vars } (u^0, u^1, L) \]
Find $L(u^0, u^1)$ for a conventional particle with dispersion relation $\rho_0^2 - \rho_1^2 = m^2 \quad (1)$ (in 1+1 space)

Solution:

Homogeneity: $L = -\rho_0 u^0 - \rho_1 u^1 \quad (2)$

Group velocity: $\frac{u^1}{u_0} = -\frac{\partial \rho_0}{\partial \rho_1} \quad (3)$

Implicit differentiation of (1) wrt ρ:

$$2\rho_0 \frac{\partial \rho_0}{\partial \rho} - 2\rho_1 = 0 \Rightarrow \frac{\partial \rho_0}{\partial \rho} = \frac{\rho_1}{\rho_0}$$

\Rightarrow eq. (3) becomes $\frac{u^1}{u_0} = -\frac{\rho_1}{\rho_0} \quad (3')$

Use (3') to eliminate ρ_1 from (2)

$$L = -\rho_0 u^0 - \left(-\frac{u^1}{u_0 \rho_0}\right) u^1 \Rightarrow L = -\rho_0 u_0 \left[1 - \left(\frac{u^1}{u_0}\right)^2\right] \quad (2')$$
Use (3') to eliminate p_1 from (1):

$$p_0^2 - \left(- \frac{u_1'}{u_0} p_0 \right)^2 = m^2$$

$$\Rightarrow p_0^2 \left[1 - \left(\frac{u_1'}{u_0} \right)^2 \right] = m^2$$

$$\Rightarrow p_0 = \pm \frac{m}{\sqrt{1 - \left(\frac{u_1'}{u_0} \right)^2}} \quad -(1')$$

Use (1') to eliminate p_0 from (2')

(2') : $L = -p_0 u_0 \left[1 - \left(\frac{u_1'}{u_0} \right)^2 \right]$

$$= \pm \frac{m u_0}{\sqrt{1 - \left(\frac{u_1'}{u_0} \right)^2}} \left[1 - \left(\frac{u_1'}{u_0} \right)^2 \right]$$

$$\Rightarrow L = \pm m \sqrt{(u_0)^2 - (u_1')^2} \quad \Rightarrow L = \pm m \sqrt{u_\mu u^\mu}$
Example: Lagrange function for quadratic SME dispersion relations

General form is:

\[(p + k)Q(p + k) = \mu^2\]

- \(k_\nu\) is constant
- \(\mu\) is mass-like constant
- \(Q^{\mu\nu}\) is symmetric, constant; tends to \(\eta^{\mu\nu}\) in conventional limit

General procedure can be used to show that:

\[L = \mp \mu\sqrt{uQ^{-1}u} + k \cdot u\]

\(L\) is solution to a quadratic, so two cases: particle, antiparticle

Kostelecký, NR, PLB 693, 443 (2010)
Example: Find L for the quadratic case of a_ν and e_ν

Dispersion relation:

$$0 = p(\delta - ee)p + 2(me - a)p - m^2 + a^2$$

It follows that:

$$Q_{\mu\nu} = \eta_{\mu\nu} - e^{\mu}e^{\nu} \quad k_\nu = -a_\nu - \frac{(m - e \cdot a)}{(1 - e^2)} e_\nu \quad \mu = \frac{(m - e \cdot a)}{\sqrt{1 - e^2}}$$

The Lagrange function is:

$$L = -\frac{(m - e \cdot a)}{\sqrt{1 - e^2}} \sqrt{u^2 + \frac{(e \cdot u)^2}{1 - e^2}} - a \cdot u + \frac{(m - e \cdot a)}{1 - e^2} e \cdot u$$

Notes:

(i) When e_ν present, a_ν appears as more than a shift in L
(ii) homogeneity in u of degree one
(iii) SME coefficients do not appear in separate terms; they are mixed
(iv) $(a_{\text{eff}})_\nu \equiv a_\nu - me_\nu$ (Kostelecký, Tasson arXiv:1006.4106)

Kostelecký, NR, PLB 693, 443 (2010)
Example: Find L for the quartic case of b_ν.

Quartic dispersion relation:

$$0 = (-p^2 + b^2 + m^2)^2 - 4(b \cdot p)^2 + 4b^2 p^2$$

Here, general procedure leads to a polynomial of degree 8 in L:

$$0 = (-b^2 (b \cdot u)^2 + b^2 L^2 - m^2 (b \cdot u)^2)^2 \times \left(b^2 u^2 - (b \cdot u)^2 + (L + m\sqrt{u^2})^2 \right) \left(b^2 u^2 - (b \cdot u)^2 + (L - m\sqrt{u^2})^2 \right)$$

Last two factors: acceptable Lagrange function:

$$L = (\mp) m\sqrt{u^2} \pm \sqrt{(b \cdot u)^2 - b^2 u^2}$$

Four solutions: analogy with particle, antiparticle, ‘spin up’, ‘spin down’

Kostelecký, NR, PLB 693, 443 (2010)
Some canonical-momentum properties

\[p_\nu = \frac{m u_\nu}{\sqrt{u^2}} \pm \frac{(b \cdot u)b_\nu - b^2 u_\nu}{\sqrt{(b \cdot u)^2 - b^2 u^2}} \]

Solution: \(p_\mu = \text{constant}, \ u^{\mu}(\lambda) = \text{constant} \)

Notes:
\(p_\nu \) and \(u^{\nu} \) are not collinear:
Can have \(p = 0 \) and \(u \neq 0 \):
Can have \(u = 0 \) and \(p \neq 0 \)
d space

For case of \[\mathcal{Y} \equiv \frac{1}{4} d_{\mu \nu} \tilde{d}^{\mu \nu} = 0 \]

\[X \equiv \frac{1}{4} d_{\mu \nu} d^{\mu \nu} \]

Colladay and McDonald have found:

\[
L_d = -\frac{m}{1-2X} \left[\sqrt{(1-2X)u^2 + ud_x^2u} \pm \sqrt{ud_x^2u} \right]
\]

Method

Disp rel \(\rightarrow \) solve for \(p_0(p) \) if factorizable \(\rightarrow \) Hamiltonian

\(\rightarrow \) Legendre transformation to get \(L(u) \)
The H$_{\mu\nu}$ coefficient gives a quartic dispersion relation

$$(\rho^2 - m^2 + 2x)^2 - 8x\rho^2 - 4\rho H\bar{H}\rho + 4y^2 = 0$$

where $x = \frac{1}{4} H_{\mu\nu} H^{\mu\nu}$ and $y = \frac{1}{4} H_{\mu\nu} \bar{H}^{\mu\nu}$

Case of $y = 0$:

$$L = -m\sqrt{u^2} \pm \sqrt{u H\bar{H}u + 2x u^2}$$

Case of $x = 0$, $y = 0$:

$$L = -m\sqrt{u^2} \pm \sqrt{u H\bar{H}u}$$

General case of $y \neq 0$ involves solving quartic for L.
Having seen several Minkowski-space Lagrangians, we ask if these can be promoted to Finsler structures. Let's take the Riemann case as a start.

\[
\begin{align*}
\text{Randen} & \quad F = \sqrt{y^2} + \alpha \cdot y \\
\text{b-space} & \quad F = \sqrt{y^2} + \sqrt{b^2 y^2 - (b \cdot y)^2}
\end{align*}
\]

Is b-space a Finsler space? (Yes) Of Randen type? (No)

- Need to verify the properties of the definition.
Geometry

Consider a background vector field $b_k(x)$ in Riemann space. At any point, the velocity vector makes an angle θ with $b_k(x)$.

\[
\cos \theta = \frac{b_k y^k}{\|b \| \|y\|}
\]

We can obtain parallel and perpendicular projections of y^i wrt. b^k:

\[
y^i_{\|} = \frac{1}{b^2} (b \cdot y) b^k
\]

\[
y^i_{\perp} = \frac{1}{b^2} \left[b^2 y^k - (b \cdot y) b^k \right]
\]

Properties: $y_{\|} + y_{\perp} = y$

\[
y_{\|} \cdot y_{\perp} = 0
\]

(Euclidean geometry)
1. Show that $\|a\|\|y_{\parallel}\| = \pm a \cdot y^j$

From previously, we have $y_{\parallel}^j = \frac{1}{a^2} (a \cdot y) a^j$

$\Rightarrow y_{\parallel}^2 = \frac{1}{a^4} (a \cdot y)^2 a^2 = \frac{(a \cdot y)^2}{a^2}$

$\Rightarrow a^2 y_{\parallel}^2 = (a \cdot y)^2$

Take square root: $\|a\|\|y_{\parallel}\| = \sqrt{(a \cdot y)^2} = \pm a \cdot y$

$\begin{cases} + \text{ if } 0 \leq \theta \leq 90^\circ \\ - \text{ if } 90^\circ < \theta \leq 180^\circ \end{cases}$

2. Show that $\|b\|\|y_{\perp}\| = \sqrt{b^2 y^2 - (b \cdot y)^2}$

$y_{\perp}^2 = \frac{1}{(b \cdot y)^2} [b^2 y^j - (b \cdot y) b^j][b^2 y_j - (b \cdot y) b^j]$

$= \frac{1}{b^4} \left[b^4 y^2 - 2b^2 (b \cdot y)^2 + (b \cdot y)^2 b^2 \right] = \frac{1}{b^4} \left[b^4 y^2 - b^2 (b \cdot y)^2 \right]$

$= \frac{1}{b^2} \left[b^2 y^2 - (b \cdot y)^2 \right]$ Result follows by taking $\sqrt{\cdot}$.
Two Finsler structures F follow from the triangle properties.

\[\|y\| \leq \|y\| \]

\[\|y\| \leq \|y\| \]

Restrict to $\|b\| < 1$ and $\|y\| > 0$

- **Parallel:**
 \[\|y\| > \|b\| \|y\| \|
 \Rightarrow \|y\| \pm \|b\| \|y\| > 0
 \text{i.e.} \sqrt{y^2} \pm b \cdot y > 0
 \]

- **Perpendicular:**
 \[\|y\| > \|b\| \|y\| \|
 \Rightarrow \|y\| \pm \|b\| \|y\| > 0
 \sqrt{y^2} \pm \sqrt{b^2 y^2 - (b \cdot y)^2} > 0
 \text{(exercise)}
 \]

\[F_a \equiv \sqrt{y^2} \pm a \cdot y \]

\[F_b \equiv \sqrt{y^2} \pm \sqrt{b^2 y^2 - (b \cdot y)^2} \]

Randers space (use a)

b-space
Geodesics in Finsler space

extremize arc length

$$\int ds = \int F(x, y) d\lambda$$

Geodesic equation...

$$F \frac{d}{d\lambda} \left(\frac{1}{F} \frac{dx^j}{d\lambda} \right) + \Gamma^j_i = 0$$

spray coeff.

Geodesic equation, for arc length parameter choice

$$\ddot{x}^j + \tilde{\gamma}^j_{kl} y^k y^l = \left\{ \tilde{D}(\text{SME background}) \right\}^j$$

holds for $a, b, H, (\text{all}....?)$ SME spaces

If SME background is r-parallel eg. $\tilde{D}_j H_{kl} = 0$,
trajectory satisfies conventional geodesic equation

\rightarrow Can r-parallel SME backgrounds be removed by field redefinitions?
(AK, PLB 2011)
Torsions

Finsler spaces

\[C_{jkl} := \frac{1}{2} \frac{\partial}{\partial y^i} (g_{jk}) \]

Diecke's theorem

\[= 0 \]

\[\neq 0 \]

Riemann space

Cartan torsion

Matsumoto torsion

Matsumoto-Hōjō theorem

\[M_{jkl} \]

\[= 0 \]

\[\neq 0 \]

Randers space

Your name (?) torsion

Your name (?) theorem

\[(?,?)_{jkl} \]

H, other SME spaces

b space ??
Curvatures

Berwald h-v curvature

\[
B P^j_{k,l m} := -\frac{1}{2} F \frac{\partial}{\partial y^k} \frac{\partial}{\partial y^l} \frac{\partial}{\partial y^m} (G^{ij})
\]

For \(a, b, H\) space, (and other SME spaces?)

- \(r\)-parallel background \(\Rightarrow G^{ij} = \tilde{\gamma}^{ij}_{kl} y^k y^l\) quadratic in \(y\)
- \(\Rightarrow B P^j_{k,l m} = 0\) ‘Berwald space’

Converse holds for Randers space:

- \(a\)-space with zero Berwald curvature \(\iff a(x)\) is \(r\)-parallel

Open question:

- SME space with zero Berwald curvature \(\iff\) SME background is \(r\)-parallel
Finally

1. Motivation and definition
2. SME related cases: Flat-space limit
3. Curved space example -- b-space
4. Some notes on H space (in preparation)

- Finsler structures \(\sim \) Lagrange Functions
- allow for symmetry breaking
- Structures are physically motivated by dispersion relation from Minkowski-space fermions
- Complementarity property

\[a_\mu \leftrightarrow b_\mu \]
\[H_{\mu \nu} \leftrightarrow H_{\mu \nu}^{-1} \] (in progress)