Ratio of |Det R_{j}| to Ehlich/Wojtas bound: 1

M=R_{j}^{T}R_{j}=R_{j} R_{j}^{T}

| S 0 | M = | | | 0 S |with S = 108 I + 2 J where I is the 55×55 identity matrix and J is the 55×55 matrix with all entries 1.

There are two known matrices composed of circulant blocks, A and B:

| A B | | | | T T| |-B A |The first rows of A and B are:

R

---++-+--+++-++---++--+--+--+-+-+-+-+--+++++++++++--+++ ----+-+++-++--++++-++++-+--+-+++-+++-+----+++++-++-++++R

---+-----++-++-++--++++-+-+++-+-+-++++++++--+++-++++-++ ----+-+---++++-+-++-++++---+--++++-+--++--++-++-+-+++++

Notes:

- The maximal matrices R
_{1}and R_{2}were found by Fletcher and Seberry [FS]. They are of circulant block form.

Back to maximal determinant main page.

Page created 12 April 2005.

Last modified 12 April 2005.

Comments: maxdet@indiana.edu