116×116 {-1, +1} matrices of maximal determinant

|Det Rj| = 13186024362271637209747282177131586677436432083445459411033775109535254294151860547922×2115 = 58×2957×2115

Ratio of |Det Rj| to Hadamard bound: 1

M=RjTRj= Rj RjT=116 I
where I is the 116×116 identity matrix.

Notes:

  1. Maximal matrix first found by Baumert. [Bau]. It is a Williamson type Hadamard matrix.
  2. N. J. A. Sloane's Library of Hadamard matrices lists a Williamson matrix of order 116.
  3. J. Seberry's web site lists 1 Williamson matrix and 5 good matrices of order 116.

Back to maximal determinant main page.
Page created 12 April 2005.
Last modified 12 April 2005.
Comments: maxdet@indiana.edu