118×118 {-1, +1} matrices of maximal determinant

|Det Rj| = 771382425192890776770216007362197820630031276881559375545475843907812376207883842053437×2117 = 3393×2957×2117

Ratio of |Det Rj| to Ehlich/Wojtas bound: 1

M=RjTRj=Rj RjT

    | S   0 |
M = |       |
    | 0   S |
with S = 116 I + 2 J where I is the 59×59 identity matrix and J is the 59×59 matrix with all entries 1.

There are two known matrices, composed of circulant blocks, A and B:

 | A   B |
 |       |
 |  T   T|
 |-B   A |
The first rows of A and B are:
R1:
+++-++----+++-+-+++--+--++------+---+-----+--+-+--+---+----
++++++--+++--+---++-+-+-+---+-+----++++-++-+--++-+--+------
R2:
++++-+-+--++--++++-+---+-++-----+---+-+-+--++--------------
++-++---+-+++-++-+----++-+-++---+--+-+--++++--++---+-++----

Notes:

  1. The maximal matrices R1 and R2 were found by Fletcher, Koukouvinos, and Seberry [FKS]. They are of circulant block form.

Back to maximal determinant main page.
Page created 12 April 2005.
Last modified 12 April 2005.
Comments: maxdet@indiana.edu