Ratio of |Det R_{j}| to Ehlich/Wojtas bound: 1

M=R_{j}^{T}R_{j}=R_{j} R_{j}^{T}

| S 0 | M = | | | 0 S |with S = 116 I + 2 J where I is the 59×59 identity matrix and J is the 59×59 matrix with all entries 1.

There are two known matrices, composed of circulant blocks, A and B:

| A B | | | | T T| |-B A |The first rows of A and B are:

R

+++-++----+++-+-+++--+--++------+---+-----+--+-+--+---+---- ++++++--+++--+---++-+-+-+---+-+----++++-++-+--++-+--+------R

++++-+-+--++--++++-+---+-++-----+---+-+-+--++-------------- ++-++---+-+++-++-+----++-+-++---+--+-+--++++--++---+-++----

Notes:

- The maximal matrices R
_{1}and R_{2}were found by Fletcher, Koukouvinos, and Seberry [FKS]. They are of circulant block form.

Back to maximal determinant main page.

Page created 12 April 2005.

Last modified 12 April 2005.

Comments: maxdet@indiana.edu