Lecture 6
Gradient Echo Based Techniques and Applications
Chen Lin, PhD
Indiana University School of Medicine & Clarian Health Partners

The Anatomy of Basic MR Pulses

Magnetization Preparation Section
- Chemical Shift Selective Saturation/Excitation
- Spatial Selective Saturation
- Magnetization Transfer (MT), CHESS water suppression
- Inversion Recovery (IR)

Data Acquisition Section
- Shot/Slab Selective Excitation
- Phase Encoding
 - Spatial locality (SE), Echo Planar Imaging (EPI), Single-shot FSE (HASTE)
 - Gradient Recalled Echo (GRE), Single-shot GRE (EPI)
- Diffusion Weighting (DWI/DTI) and Gradient Moment Nulling (GMN)
- Frequency Encoding
- Filling of K-space

Magnetization Recovery Section
- Spoiling
- Driven Equilibrium

Gradient Recalled Echo (GRE)

GRE versus SE

- No 180° refocusing RF pulse
 - De-phasing in the transverse plane due to chemical shift and B₀ inhomogeneity is NOT recovered.
 - T₂* weighted instead of T₂ weighted
 - Prone to artifacts
- Shorter TR
 - Short scan time
 - 3D and breath hold acquisitions
 - and typically with FA < 90°
 - Lower RF energy deposition per TR than SE
 - But not necessary lower SAR

3D GRE

Spoiling

- Destroy magnetization build up in the transverse plane.
 - TR >> T₁ or T₂ (transverse relaxation)
 - Crusher gradients (gradient spoiling)
 - Change the phase RF excitation pulse (RF spoiling)
- Suppress signal from remaining Mₓ from previous TR
 - different spatial encoding -> artifacts
 - T₂ weighting -> contrast alteration
Flavors of GRE Sequence

• Spoiled GRE:
 – FLASH/SPGR/T1-FFE
 – Multi-echo spoiled GRE
 – MEDIC
 – VIBE
• Un-spoiled/Rewound/Coherent GRE:
 – FISP/GRASS/FFE
 – PSIF/SSFP/T2-FFE
 – TrueFISP/FIESTA/b-FFE
 – CISS/FIESTA-C
 – DESS

FLASH Applications

• T_1 weighed anatomical
• DCE imaging and perfusion (T_1 change with contrast concentration)
• CE MRA (T_2 reduction due to contrast agent)
• TOF MRA (T_1 reduction due to inflow)
• PC MRA
• SWI (T_2^* reduction due to deoxyhemoglobin in venous blood)
• B_0 and B_1 field mapping

2D FLASH/SPGR/FFE-T1

• Only use signal only from gradient echo.
• Signal is T_1 and T_2^* weighted and flip angle dependent:
 \[
 S = \rho \frac{\sin \alpha [1 - e^{-TR/T1}] - e^{-TR/T2}}{1 - \cos \alpha e^{-TR/T2}}
 \]
• Ernst condition:
 \[
 \alpha_{\text{Ernst}} = \cos^{-1} \left[e^{-TR/T1} \right]
 \]

2D/3D FLASH Example @ 3T

• Use High rBW to minimize susceptibility artifacts
• Use in-phase TE to keep fat bright

In and Out of Phase for Water and Fat

TE: 0 ms
2.25 ms
4.5 ms

\[
\begin{align*}
S_{\text{w}}(\text{TE}_{\text{in}}) &= S_{\text{w}} - S_{\text{f}}(\text{TE}_{\text{out}}) \\
S_{\text{w}}(\text{TE}_{\text{out}}) &= S_{\text{w}} + S_{\text{f}}(\text{TE}_{\text{in}}) \\
S_{\text{f}} &= \frac{S_{\text{w}}(\text{TE}_{\text{in}}) + S_{\text{w}}(\text{TE}_{\text{out}})}{2}; \ S_{\text{f}}(\text{TE}_{\text{out}}) = S_{\text{f}}(\text{TE}_{\text{in}}) - S_{\text{f}}(\text{TE}_{\text{out}})/2
\end{align*}
\]

Two-point and Three-point DIXON

\[
\begin{align*}
\alpha(\theta_0) = \alpha(\theta_{\text{in}}) \\
\alpha(\theta_0) = \alpha(\theta_{\text{in}}) \\
\alpha(\theta_0) = \alpha(\theta_{\text{in}})
\end{align*}
\]
DIXON Example

Chen Lin, PhD 3/09

B₀ Field Mapping

\[\Delta \phi = 2\pi \Delta B₁(TE₂-TE₁) \]

Chen Lin, PhD 3/09

Multi-echo (ME) Spoiled GRE

\[T₂^* \text{ Quantification/Mapping} \]

Chen Lin, PhD 3/09

T₂* Mapping Applications

- Cartilage: Early detection of biochemical changes
- Liver and myocardium: Estimation of iron concentration

Cartilage T₂ Map
Cartilage T₂ Map

Chen Lin, PhD 3/09

MEDIC: Multi Echo Data Image Combination

Magnitude images from each echo are combined using sum of squares algorithm

Chen Lin, PhD 3/09

MEDIC Application

Cartilage lesions (arrow)

FLASH versus MEDIC

VIBE: Volume Interpolated Breath-hold Examination

VIBE Application

VIEWS: Volume Interpolated Examinations with Water-Stimulation

FISP versus PSIF

TrueFISP/FIESTA/bFFE
TrueFISP/FLASH Setup

- Sequence type: TrueFISP → GRE
- Segments: 20 → 7
- Flip angle (°): 60 → 12
- Bandwidth (Hz/pixel): 390 → 794
- TR: 39.27 → 20.78 ms
- TE: 157 → 3.41 ms

TrueFISP Applications

- **Imaging of Fluid**
 - Cardiac (Bright blood imaging)
 - MSK (Fluid in the joint space)
 - Non-contrast MRA (High signal from blood)
- **Fast acquisition**
 - Cardiac (Real-time imaging)
 - Fetal imaging

TrueFISP and FLASH Example

Off-resonance Effect

- To Reduce phase accumulation between excitation:
 - Improve B_0 homogeneity
 - Reduce TR

CISS – Constructive Interference Steady State

DESS – Double Echo Steady State
WE-DESS Imaging of Ligament

FLASH vs FISP vs DESS

Thank You!

www.indiana.edu/~mri