Inversion Recovery (IR) Techniques and Applications

Chen Lin, PhD
Indiana University School of Medicine & Clarian Health Partners

The Anatomy of Basic MR Pulse Sequences

Magnetization Preparation Section
- Chemical Shift Selective Saturation & Excitation
- Spatial Selective Saturation
- Magnetization Transfer (MT)
- Inversion Recovery (IR)

Data Acquisition Section
- Slice/Shot Selective Excitation
- Echo Generation
- Gradient-Recalled Echo (GRE), Single-shot FSE (HASTE)
- Diffusion Weighting (DWI/DTI) and Gradient Moment Nulling (GMN)
- Frequency Encoding
- Filling of k-space

Magnetization Recovery Section
- End of Sequence Spoiling
- Driven Equilibrium

Variations of IR Technique

Inversion Options:
- Non-selective
- Slice-selective
- Spectral selective
- Adiabatic
- Flow-induced Adiabatic
- Combination of multiple inversions

Acquisition Options:
- Unlimited (TSE and TFL are common)
- 2D and 3D
- View ordering and correction of k-space modulation can be important.

Applications of IR

- Selectively suppress tissue / background signal based on T1 differences
 - STIR
 - FLAIR
 - SPAIR
- Improve T1 contrast (Phase Sensitive Recon)
 - MP-RAGE, IR-SPGR, IR-TFE
 - T1 FLAIR
 - T1 IR
- T1 Measurement / T1 Mapping
- Tagging / Labeling
 - Non-CE perfusion with Arterial Spin Labeling (ASL)

STIR, FLAIR, TI and TI_null

STIR: Short Tau Inversion Recovery, TRIM
FLAIR: FLuid Attenuated Inversion Recovery, “Dark Fluid”
T1 of Various Tissue Types

<table>
<thead>
<tr>
<th>Tissue</th>
<th>T1 @ 1.5T (msec)</th>
<th>T1 @ 3.0T (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF</td>
<td>4400</td>
<td>4500</td>
</tr>
<tr>
<td>WM</td>
<td>780</td>
<td>850</td>
</tr>
<tr>
<td>GM</td>
<td>920</td>
<td>1330</td>
</tr>
<tr>
<td>Blood</td>
<td>1200</td>
<td>1500</td>
</tr>
<tr>
<td>Muscle</td>
<td>870</td>
<td>1160</td>
</tr>
<tr>
<td>Fat</td>
<td>220</td>
<td>260</td>
</tr>
</tbody>
</table>

\[T_{1\text{null}} = 0.69 \times T1 \]

Dependence on Inversion Flip Angle and TR

As the inversion flip angle or TR decreases:
- \(T_{1\text{null}} \) also decreases.
- Suppression becomes less selective.

Interleave of Inversion & Acquisition

More about STIR

- In-sensitive to \(B_0 \) inhomogeneity
 - More reliable than FATSAT for large FOV and off-center
 - Works at lower field strengths
- High visibility for fluid
 - Long T1 bright on STIR
 - Long T2 bright on STIR, given long enough TE
- Lower SNR
 - Improved with shorter TE (17-48 msec)
- Bad idea with Gd
 - Shorter post-contrast tumor T1
- Red marrow signal can obscure subtle edema
 - Use TE=45-48+ to suppress marrow

STIR versus FATSAT in the Presence of Metal “Hardware”

81 year old female, right hip prosthesis

Cor CT
Cor FSE T2 with FATSAT
Cor STIR
Modified STIR for MSK

- TE=50-100; Ti=110-120 @ 1.5T
- Improved SNR and excellent fluid sensitivity in soft tissues

Water Saturation plus STIR for Imaging Silicone Implant

STIR
- Improved SNR and excellent fluid sensitivity in soft tissues

FLAIR (Dark Fluid) for Brain

FLAIR (Modified FLAIR)

- Used short TR and TI than conventional FLAIR
- Suppress CSF and provides T1 contrast

SPAIR – SPectrally Adiabatic Inversion Recovery

- SPAIR uses an adiabatic frequency selective inversion pulse.
- Insensitivity to B1 inhomogeneity (better for 3.0T)
- Takes longer time and generates higher SAR than conventional ChemSat

Conventional vs Adiabatic Inversion
Dark Blood for Cardiac Applications

Cardiac Morphology with DIR

DIR for Brain

Inversion-Recovery for ON-resonant water suppression (IRON)

Triple IR (TIR) or DB STIR

DIR versus TIR
DIR Optimization for Cardiac

- TR too short: systolic motion reduces myocardial signal
- TR optimized
- TR too long: blood signal begins to recover

Adjust TI according to Heart Rate or TR (Lock Contrast)

<table>
<thead>
<tr>
<th>Heart Rate BPM</th>
<th>RR msec</th>
<th>TR msec</th>
<th>TI msec</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>600</td>
<td>1200</td>
<td>420</td>
</tr>
<tr>
<td>80</td>
<td>750</td>
<td>1500</td>
<td>550</td>
</tr>
<tr>
<td>60</td>
<td>1000</td>
<td>2000</td>
<td>630</td>
</tr>
</tbody>
</table>

T1 In-sensitive DB with Quad IR

- QIR
- DIR

Small FOV with Quad IR

Background Suppression with IR in Renal MRA

Improve Tissue Contrast with IR

- MPRAGE T1 @ 3T: 0.9x0.9x0.9 mm³; TA: 4:31
T1-weighted FLuid-Attenuated Inversion Recovery (T1FLAIR)

- Axial T1 FLAIR @ 3T with TR/TE/TI/ETL = 2100/9.5/900/3
- Improves T1 contrast at 3.0T
- High SAR limits number of slices and coverage

Myocardial Viability (Delay Enhancement)

- Increased distribution volume of contrast within necrotic myocardium.
- Necrotic tissue has faster T1 recovery than normal tissue following an IR pulse.
- Adjusting the TI to null normal myocardium gives maximum image contrast between necrotic and normal myocardium tissues.

Suppress Normal Myocardium with IR

- ECG
- Trigger
- Non-selective 180° inversion
- Necrotic
- Normal
- Non-selective 180° inversion
- Necrotic
- Normal
- Non-selective 180° inversion
IR FLASH/TruFISP/EPI for Delayed Enhancement

Suppress the signal from normal myocardium

T₁ Scout

T₁ Scout

IR with Phase Sensitive (PS) Recon

IR with Phase Sensitive (PS) Recon

True IR (Real IR) for Brain

True IR (Real IR) for Brain

PS T₁IR

PS T₁IR

Hou et al. AJNR 2005 26 (6): 1432

Phase Sensitive Reconstruction

Phase Sensitive Reconstruction

- An image reconstruction option, no additional scan time
- Improve contrast
- May produce artifact.

Ask for both magnitude recon and PS recon images.
Summary

- Inversion Recovery (IR) is a useful technique to improve tissue contrast based on their T1 differences.
- The improvement typically come with a cost of lower SNR and longer time.
- Multiple IRs targeting different species can be combined in a single acquisition.