MRI Artifacts and Solutions

Chen Lin PhD DABR
Indiana University School of Medicine & IU Health Partners

Declaration of Conflict of Interest or Relationship
Research support from Siemens Healthcare

Type of Artifacts

- K-space Error Artifacts
- Motion and Flow Artifacts
- bSSFP Artifacts
- EPI Artifacts
- ...

K-SPACE ERROR ARTIFACTS

K-space data Overflow

Truncation of k-space Data

Ringing around high contrast objects
Nyquist (N/2) Ghosting

- Different phase shifts in odd and even frequency encoding lines
- Correct by:
 - Gradient calibration and/or eddy current compensation
 - Reference scan (w/o phase encoding or shifting one phase step)
MOTION ARTIFACTS

How to deal with motion?

1. Minimize the amount of motion:
 - Explain the procedure to the patient ahead of time and give feedback during the exam.
 - Ensure comfortable position (e.g. with cushions)
 - Use immobilization devices (e.g. straps, ..., bit bar)
 - Encourage patient cooperation (e.g. Breath-hold)
 - Pharmacological intervention (e.g. Sedation, GA, O2, ...)

2. Suppress signal from moving tissue/organ:
 - Spatial and/or chemical shift selective saturation
 - Use/select appropriate coils
 - Reduced FOV imaging

How to deal with motion? (cont’d)

3. Change / hide of motion artifact
 - Swap phase and frequency directions
 - Use multiple averages
 - Use pseudo random k-space sampling / random view order

4. Monitor and repeat inadequate scans (with adjusted protocols)

Motion Compensation Techniques

1. Motion Detection:
 - Physiological signal: ECG, Pulse, Respiratory Bellow
 - Direct measurement: optical
 - Navigator: 1D, 2D, 3D, Spherical, ...
 - Extract Motion info from acquired data.
 - Comparison of overlapping k-space segments
 - Image registration
 - Combination of the above
Motion Compensation Techniques

2. Correction scheme:
 – Prospective triggering
 – Retrospective gating
 – Sorting data according to the phase of periodical motion (CINE)
 – Reordering of phase encoding steps
 – Update spatial encoding gradients
 – Correct phase error due to motion

Retro Gating with Arrhythmia Rejection

Min. RR	Max. RR
Target RR

How to deal with motion?

5. Use motion insensitive techniques:
 – Use short essential protocols and scan critical series first.
 – Protocol short scans and/or split a long scan (Use end-expiration for BH consistency)
 – Use faster imaging techniques:
 • Acquire fewer k-space points per image (e.g. parallel imaging)
 • Reduce TR (e.g. GRE, high performance gradient HW, higher BW)
 • Acquire more k-space points per excitation (e.g. SS-EPI, SS-FSE (HASTE), etc.)
 – Motion insensitive k-space sampling (e.g. Radial sampling (PR), Spiral)
 – Flow/motion compensating gradient waveform (e.g. GMN)

Arrhythmia Rejection

Prospectively Triggered blurred by arrhythmias
Retrospectively Triggered with arrhythmias rejection

Segmented versus Single Shot

Segmented DB TSE
8 heartbeats
High spatial resolution
High temporal resolution
Sensitive to arrhythmia and breathing

Single Shot DB HASTE
1 heartbeat
Low spatial resolution
Low temporal resolution
Less sensitive to motion

TSE with MBH versus HASTE

Breath Hold TSE
Free Breathing HASTE
Radial k-space Sampling

- No phase encoding and less sensitive to motion
- Higher spatial and/or temporal resolution
- Isotropic in-plane resolution
- No phase wrap at smaller FOV
- Radial streaks artifact, more pronounced near edge FOV

Higher Resolution with Radial

- Cartesian Real-Time Cine
 - Echo-sharing
 - 50 lines
 - 55 ms frame rate
 - 300mm x 300mm FOV
 - 2.3mm x 6.0mm res

- Radial Real-Time Cine
 - Interleaved Echo-sharing
 - 50 lines
 - 55 ms frame rate
 - 300mm x 300mm FOV
 - 2.3mm x 2.3mm res

Single-shot

- Segmented: Acquired data over several heart beats
- Single-shot: Acquire all k-space data in ONE heart beat i.e. segments = Yres

Real-time Single-Shot

- Acquired temp res about 150ms
- Effective temp res about 75ms
 - With iPA T temp res about 50ms

EKG Trigger

Slice #1

Slice #2

Slice #3

Phase #1 #2 #3 # n
Real-time Single-shot

- Real-time
- Multiple slices
- Free breathing
- Lower resolution

- Can be used non-triggered and non-breath hold with multiple slices.
- Less temporal and spatial resolution than segmented view-shared.

Real-time TrueFISP Example

- 7 short-axis cine slices covering from base to apex of heart, with matrix 70*128.
- After triggering, and all k-space views for each slice were acquired in rapid succession.
- All 7 slices in 14 heartbeats and single breath-hold.

In non-triggered mode, the number of phases define how long the scan will run.

Retrospective Motion Correction

- Spatial pre-saturation pulses prior to entry of the vessel into the slices
- Motion Compensation Gradients
- Cardiac & respiratory gating
- Surface coil localization

Flow Artifact

- Flow Artifact Correction
- BSSFP OFF-RESONANCE ARTIFACTS
Bright Blood Sequences

- **SSFP (FLASH)**
- **Balanced SSFP (TrueFISP)**

Un-spoiled GRE (SSFP)

- **SSFP-FID:**
 - Echo formed from un-spoiled Mxy of previous TR
- **SSFP-ECHO:**
 - T2 weighted

Off-resonance Effect

To Reduce phase accumulation between excitation:
- Improve B_0 homogeneity or shift center frequency
- Reduce TR

bSSFP/TruFi Banding

- $-100Hz$
- $100Hz$
- $-50Hz$
- Local Shim
- $50Hz$

CISS – Constructive Interference Steady State

EPI ARTIFACTS
Breast DWI

Artifacts in EPI

Geometric Distortion in EPI

How to reduce Echo SPacing (ESP)

How to reduce echo train length (ETL)

Multi-shot EPI (MS-EPI)
Examples with varying ESP & ETL

Chemical Shift Artifact in EPI

Without Fat Suppression
With Fat Suppression

Other Artifact in EPI

• “Blurring”
 – Due to T2* induced signal modulation in k-space.
 – May not be obvious due to low spatial resolution and other artifacts.

• “Dark Spots”
 – Intra-voxel de-phasing to due to off resonance.
 – Reduce voxel size, i.e. slice thickness.
 – SE-EPI.

What are the artifacts?

Thank You!

www.indiana.edu/~mri