Cardiac MRI: Application to Disease

Stacy Rissing, MD
Cardiothoracic imaging, Indiana University

Outline
- Imaging planes
- Disease findings
 - Pulse sequences used for each indication
 - Pathophysiology being evaluated

Imaging planes

3 Plane localizer

Axial Haste

2 Chamber
Planned from axial images---usually HASTE
2---chamber view

Pseudo short axis
Planned from 2 chamber cine

Pseudo short axis

4 chamber
Planned from Pseudo SA and 2 Chamber

4 chamber

True short axis
LVOT
Left ventricular outflow tract
Planned off of pseudo SA

LVOT₁ and LVOT₂

Trans-aortic valve view
Planned off LVOT₁ and LVOT₂

Trans-aortic valve view

Disease

CMR for Myocardial Disease
- Coronary artery disease
 - Is there viable myocardium? Function and viability study
- Infiltrative myocardial disease
 - Sarcoidosis and Amyloidosis
- Myocarditis
 - Most called idiopathic, some cases with viral etiology
- Cardiomyopathy
 - Dilated CMQ, Hypertrophic CMQ, and ARVC
CMR for Myocardial Disease

- **CORONARY ARTERY DISEASE**
 - Is there viable myocardium? Function and viability study
- Infiltrative myocardial disease
- Sarcoidosis and Amyloidosis
- Myocarditis
 - Most called idiopathic, some cases with viral etiology
- Cardiomyopathy
 - Dilated CMO, Hypertrophic CMO, and ARVC

Artery Disease Viability Study

- Usual clinical question: Would this patient benefit from CABG?
- Goal is to distinguish myocardium that has the ability to contract versus myocardium that is replaced by fibrosis or scar.
- Fibrosis and scar will not regain function after CABG

Coronary Artery Disease
The “Function and Viability Study”

- The basic protocol
 - 3 plane loc, axial haste
 - Cine bright blood (SSFP) - 2chamber, short axis (stack), and 4 chamber
 - *Delayed enhancement* - SA, 2C, 4C
 - Key sequence, looking for SCAR

Function and viability

- Delayed enhancement = scar!
- Scar!!

CMR for Myocardial Disease

- Coronary artery disease
 - Is there viable myocardium? Function and viability study
- **INFILTRATIVE MYOCARDIAL DISEASE**
 - SARCOIDOSIS and Amyloidosis
- Myocarditis
 - Most called idiopathic, some cases with viral etiology
- Cardiomyopathy
 - Dilated CMO, Hypertrophic CMO, and ARVC

Infiltrative myocardial disease
Sarcoidosis

- Cardiac sarcoidosis = presence of non-caseating granulomas in the pericardium, myocardium, or endocardium → leading to clinical sequelae
- Myocardial granulomas have been associated with cardiac arrhythmia and even sudden death
Infiltrative disease
Sarcoidosis

THE PROTOCOL
- 3-plane loc, axial haste
- Cine bright blood (SSFP), 2-chamber, SA stack, and 4-chamber
- Looking for focal areas of myocardial thinning, wall motion abnormality, aneurysm formation
- T2-weighted images
- Looking for myocardial edema and inflammation secondary to this granulomatous process
- Delayed enhancement in SA, 1C, and 4C
- Focal myocardial delayed enhancement = inflammation and/or granulomatous involvement
- Often in non-ischemic pattern (not confined to coronary artery distribution)
- Sometimes characterized as “patchy” or “mid-myocardial” in distribution

Looking for focal areas of myocardial thinning, wall motion abnormality, aneurysm formation
T2-weighted images
Looking for myocardial edema and inflammation secondary to this granulomatous process
Delayed enhancement in SA, 1C, and 4C
Focal myocardial delayed enhancement = inflammation and/or granulomatous involvement
Often in non-ischemic pattern (not confined to coronary artery distribution)
Sometimes characterized as “patchy” or “mid-myocardial” in distribution

Infiltrative disease
Amyloidosis

- Cardiac amyloidosis = amyloid proteins are abnormally deposited within the heart, especially in the myocardium
- Nobody famous 😎
- Imaging findings: left ventricular thickening, enlarged atria, pericardial effusion, diffuse subendocardial enhancement involving the RV and LV

CMR for Myocardial Disease

- Coronary artery disease
 - Is there viable myocardium? Function and viability study

INFLTRATIVE MYOCARDIAL DISEASE
- Sarcoidosis and AMYLOIDOSIS
- Myocarditis
 - Most called idiopathic, some cases with viral etiology
- Cardiomyopathy
 - Dilated CMO, Hypertrophic CMO, and ARVC

THE PROTOCOL: Essentially a "function and viability study"
- 3-plane loc, axial haste
- Cine bright blood (SSFP) 2-chamber, SA stack, and 4-chamber
 - Evaluate cardiac function - often mildly reduced
 - Evaluate myocardial wall thickness and mass
- Delayed enhancement - SA, 2-chamber, 4-chamber
 - Classic pattern = diffuse subendocardial enhancement
CMR for Myocardial Disease

- Coronary artery disease
 - Is there viable myocardium? Function and viability study
- Infiltrative myocardial disease
 - Sarcoidosis and Amyloidosis
- Myocarditis
 - Most called idiopathic, some cases with viral etiology
- Cardiomyopathy
 - Dilated CMO, Hypertrophic CMO, and ARVC

Myocarditis

- Myocarditis = inflammation of the myocardium with necrosis of the adjacent myocytes; usually infectious
- Best diagnostic clue: Suddenly decreased systolic function + dilated heart + otherwise healthy person shortly after viral illness
- CMR = cardiomegally + pulmonary edema

Myocarditis

The protocol — long and exhausting for patient, tech, and radiologist:
- 2-plane tsk, axial base
- Cine bright blood (CEBP) 2–chamber, SA stack, and 4–chamber
- Chambers usually analyzed
- Evaluate cardiac function - usually reduced (evaluate extent of systolic dysfunction)
- T2–weighted images - usually in SA and 4–chamber
 - Looking for myocardial edema and inflammation
 - This is relative to skeletal muscle
 - Be sure to remind your radiologist to get plenty of skeletal muscle in the field of view - for both pre and post–contrast images, get the arm in there!
- Pre and post contrast T1–weighted images - usually SA and 4–chamber
 - Compare myocardial enhancement to skeletal muscle enhancement
 - Necrosis if possible
 - Evaluating amount of hypoxia and inflammation
- Delayed enhancement images - SA, 4C, 2C
 - Classic pattern in acute disease is subepicardial region (to distinguish from ischemic disease)
 - Looking for inflammation and scar
Myocarditis

Classic pattern could be described as patchy mid-myocardial DE. Usually regional involvement rather than global. Often involving inferolateral segments.

CMR for Myocardial Disease

- Coronary artery disease
- Infiltrative myocardial disease
- Sarcoïdosis and Amyloidosis
- Myocarditis
- Most called idiopathic, some cases with viral etiology

CARDIOMYOPATHY

- DILATED CMO, Hypertrophic CMO, and ARVC

Cardiomyopathy

Dilated CMO

- Disease of heart muscle, LV becomes enlarged (dilated) and cannot pump blood as effectively to the body (heart failure)
- Can present as no symptoms → Terrible heart failure
- Usually idiopathic → need to test other causes
- Viral infections, genetic, diabetes, CAD, etc.

THE PROTOCOL

- 3–plane fast, axial haste
- Cine bright blood
- LA, RV, a chamber, and a chamber
- To evaluate function and chamber sizes
- Delayed enhancement
- To evaluate for infarct

Cardiomyopathy

Dilated CMO

- LV too big
- Function poor

Cardiomyopathy; Hypertrophic CMO

- Many types. Most popular is the genetic disorder, which can lead to sudden death, especially in young people
- hallmark: hypertrophic cardiomyopathy

THE PROTOCOL

- Cine bright blood
- LA, RV, a chamber, and a chamber
- To evaluate function and chamber sizes
- Delayed enhancement
- To evaluate for size or obstruction
Cardiomyopathy

Hypertrophic CMO

Areas of delayed enhancement = scar
Can be source of arrhythmia

Cardiomyopathy

ARVD

- Arrhythmogenic right ventricular dysplasia
- Cardiomyopathy characterized by fibrofatty infiltration of the RV leading to arrhythmia and possibly sudden cardiac death
- Another "right" study

THE PROTOCOL

1. Three-plane bic, axial haste
2. Cine bright blood (SSFP/SPGR)
 - 4-chamber and SA cine
 - Evaluate for areas of dyskinesis of the RV wall
3. RV and arterial MR — evaluate for fibrofatty infiltration of RV
4. Delayed enhancement — fibrofatty tissue

ARVD

Axial T1-weighted black blood spin-echo images show extensive transmural fatty replacement of the right ventricular myocardium

Valve disease

Looking for stenosis or regurgitation

- Aortic
- Mitral
- Tricuspid
- Pulmonic

Aortic valve

- Stenosis or regurgitation
- Morphology—cusp?
- Helpful sequences to obtain:
 - Cine bright blood—LVOT and Trans aortic valve
 - Look for the "jet" of aortic regurgitation
 - Phase contrast

Aortic valve--- regurgitation
Aortic valve--- regurgitation

Aortic valve--- stenosis

Often seen with bicuspid aortic valve

Look for post-stenotic aortic dilatation
Double IR axial image is nice

Mitral valve

- Stenosis or regurgitation
- Cine bright blood (SSFP/SPGR)
 - SA stack, 2 chamber, 4 chamber, and 3 chamber
- Phase contrast

You get the point! Same for tricuspid and pulmonic valves.

Mitral valve--- regurgitation

Pericardial disease

- Pericarditis
- Pericardial constriction
- Pericardial fluid
 - Simple, blood, or malignant
Pericarditis

- Inflammation usually due to infection
- Double IR
 - Nice in 4-chamber and/or SA views
 - Evaluate for pericardial thickening
- Delayed enhancement
 - Look for inflammation

Pericardial constriction

- Usually a thickened, fibrotic pericardium that forms a non-compliant shell around the heart, which prevents the heart from expanding when blood enters
- In US, #1 and #2 causes are radiation therapy and surgery
- Worldwide, #1 cause is infection = TB
- Key sequences:
 - Double IR--- to evaluate for pericardial thickening
 - High temporal resolution SA cine--- to look for septal bounce
 - Delayed enhancement--- to look for pericardial inflammation
 - THOSE TAG LINES!! - to evaluate the motion of layers of pericardium
Pericardial fluid

Take home points

- Key imaging planes and pulse sequences for specific disease pathology
- Cine bright blood is a workhorse
- Delayed enhancement for inflammation, infiltration, or infarct
- Phase contrast for flow quantification
- T1, T2, and contrast images for characterization

You

- srissing@iupui.edu