Emerging MRI Techniques for Abdominal and Pelvic Imaging

Brian M. Dale, PhD

Background

PhD in Biomedical Engineering – 2004
- Case Western Reserve University
- Cleveland, OH
- Sequence programming
- Optimal design

Collaboration Manager
- Siemens Healthcare
- Cary, NC
- IDEA and Physics Team
- Abdominal MRI at 3 T

Outline

- Hepatic fat quantification
- Abdominal workflow
- MRI of the female pelvis
- Cancer characterization with 4D imaging
 - Will not cover in depth
 - FDA constraints
 - Overlap with Dr. Lin
-References

Fatty Liver Disease Progression

Incidence
- 10% - 24% overall
- Up to 75% of obese

Primary FLD
- NAFLD
- NASH

Secondary FLD
- Alcoholic
- Hepatitis
- Drug-induced
- Surgically-induced

Cirrhosis

Symptoms
- Fatigue
- Bleeding/bruising
- Nausea
- Weight loss
- Ascites

Diagnosis
- Liver biopsy
- FibroTest

Irreversible
- Prevent further damage
- Liver transplant

How Can We Detect FLD Early?

Early Stage FLD
- Treatable
- Asymptomatic
- Fat is present

MR Signal Characteristics
- Short T1
- Chemical shift 3.5 ppm
Sequence Overview

3D spoiled steady state
- T1 weighted
- Dual-echo
- In-phase
- Opposed-phase
- Single breath-hold
- Routine liver exam
- Dixon reconstruction

Terminology
- Siemens: VIBE Dixon
- GE: Lava IDEAL
- Philips: mDixon

Physics – Microenvironment Magnetic Shielding

Opposed Phase – Destructive Interference

TR = 2.2 ms

Standard IP/OP Approach

In- and Opposed-Phase Images
- Magnitude reconstruction
- Signal drop due to fat/water cancellation
- Pure voxels un-cancelled
- Ambiguous

VIBE Dixon Approach

In- and Opposed-Phase Images
- Magnitude and phase reconstruction
- Unambiguous fat/water separation
- Phase unwrapping required

Quantitative Measure of Fat

Fat Only

Fat Percentage Map

Water
Remaining Limitations

- Unproven for early stage FLD
- No good gold standard
- Liver biopsy
- Focal disease
- Phase unwrapping errors
- Mathematically ill-posed

Abdominal MR Exam Workflow

- Long duration compared to CT
 - Expensive
 - Error prone
- Value added time
 - Image acquisition
- Non-value added time
 - Coil set-up
 - Localizers
 - Adjustments
 - Breathing commands
 - Contrast delay
 - Parameter changes
- Hardware solutions
 - Dockable table
 - Array coils
- Software solutions
 - Parallel imaging
 - Automatic localization
 - Parameter optimization
 - Protocol strategies
 - Automatic voice commands

Terminology
- Siemens: DOT
- Philips: Smart Exam
- GE: ?

Dot*

Day optimizing throughput Engine

- Personalized
 - Best possible results for virtually any type of patient
- Guided
 - Guides the novice user helping them to scan more expertly
- Automated
 - With intelligent, automated workflows a new level of efficiency can be reached

Personalized

- Every patient is different – different breathhold
 - Abdomen and cardiac: just state patients breathhold capability – Dot* adapts to each patient’s breathhold capacity and links to your best scanning protocol to match
 - Breathhold settings can be changed at any time during the exam
 - Easy set-up of the best scan for each patient – higher resolution and reduction of errors

Excellent results – guided intuitively

- Dot* guides the novice user helping them to scan more expertly
- This enables results with greater efficiency at all levels and improved image consistency
Guided

The right choice when needed

- Your decisions are seamlessly integrated into the scanning process
- After a decision is taken, Dot automatically links to your protocol and updates the queue
- E.g. for Abdomen – MRCP or Diffusion
- One click, less mistakes, faster

Automated

- With intelligent, automated workflows – customizable to your standards – a new level of efficiency can be reached
- Scans are completed faster and more easily with less chance of errors or repeats

Automated Dynamic VIBE Timing

- Timing is never off – synchronized contrast timing and breathing
- AutoBolusDetection – more accurate contrast timing
- Voice commands integrated into the scanning workflow
- Automatically played at the right point in time - synchronized timing of scanning and breathing
- Personalized voice commands – easy language selection

Automated abdominal exam

- Timing is never off – even inserting sequences between venous and delayed
- Intelligent automation – no navigator positioning, no FoV adaptations necessary anymore
- Reduced user interaction – be fast, with excellent image quality
- Comprehensive liver exam in only 15 min*

Remaining Limitations

Unproven time savings
Community acceptance
Customization
Best practices strategies

Standard Female Pelvis Protocol

3-plane localizer
- Sagittal, axial, & coronal 2D TSE T2w
- Congenital anomalies
- Cancer staging
- Fibroid treatment planning

Axial 2D TSE T1w
- Congenital
- Cancer

Prep, off
- Pre- and post-contrast
- Consent planning

9 pulse sequences
In-room time > 30 min
3D T2w TSE
- Acquire 3D isotropic
- Reformat any plane
- Long echo train
 - T2 decay causes blurring
 - Variable flip angle refocusing

Terminology
- Siemens: SPACE
- GE: CUBE
- Philips: Vista

Offline Multiplanar Reformat

Coronal oblique TSE T2w
- Congenital anomalies

Axial oblique TSE T2w
- Endometrial cancer

3D TSE T2w MRI w SPACE
- Acquired
- Offline reconstructed

2D TSE T2w vs SPACE
- 50 patients (49.4 ± 14.5 yrs)
- Ax, cor & sag 2D TSE T2w
- Sag SPACE
- 4 readers
Time Savings

<table>
<thead>
<tr>
<th>Acquisition Time</th>
<th>Sagittal 3D (+ Recons)</th>
<th>Ax, cor & sag 2D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± StDev</td>
<td>6:57 ± 0:58</td>
<td>12:11 ± 2:08</td>
</tr>
<tr>
<td>Median</td>
<td>6:36</td>
<td>11:28</td>
</tr>
<tr>
<td>Minimum</td>
<td>5:17</td>
<td>9:31</td>
</tr>
<tr>
<td>Maximum</td>
<td>10:49</td>
<td>19:07</td>
</tr>
</tbody>
</table>

N = 50, unpublished data

Results

- **Image quality**
 - Overall, uterus, cervix, ovaries
 - Endometrium/junctional zone/myometrium
 - Cervical epithelium/stroma/parametrium
 - Vagina/surrounding tissue

- **Contrast**
 - Width/thickness

- **Lesion detection**

- **Artifacts**
 - Respiratory motion
 - Bowel motion

P > 0.05

P < 0.001
“Fast Female Pelvis”

3-plane localizer
Single plane 3D FSE T2w
Ax 3D dual echo GRE w/wo Gad

4 pulse sequences
In-room time < 15 min

Remaining Limitations
- Manual reformat on scanner
- Manual reformat on PACS
- Automatic inline reformat
- Reformat image quality
- Optimal thickness
- Oblique slices
- Small study
- More patients
- More pathologies

Thank You

Acknowledgements
Chen Lin, PhD
Elmar Merkle, MD
Vamsi Narra, MD
Richard Semelka, MD