Objective
To review how to optimize MRI to --
• produce high quality images of the musculoskeletal system
• provide clinically relevant diagnostic information.

Outline
• Goals of musculoskeletal MRI
• Quality image production
• Roles of various MR pulse sequences and techniques.
• Common problems in musculoskeletal MRI
Imaging goals for MSK MRI

Answer the clinical question
1. Demonstrate and characterize pathology.
2. Define extent of disease.
3. Provide information to direct management and treatment.

Objectives

Anatomic detail
Signal characteristics and abnormalities

Factors

- Scanner
- Coil
- Sequences, parameters and planes.
- Contrast agent

1. Demonstrate and characterize pathology.

History: “Rule out shoulder effusion”

Joint effusion
“Rule out Stener lesion”

1. Demonstrate and properly characterize pathology.
 - Objectives
 - Anatomic detail
 - Signal characteristics and abnormalities

History: “Arm mass”

Benign intramuscular lipoma
History: “Leg mass.”

Not lipoma.

“Rule out rotator cuff tear”

Which tendons are torn?

Signal abnormality

Which tendons are torn?
2. Define extent of disease.

- Appropriate coverage
 - Important anatomic sites
 - Joints
 - Bone

History: “trip and fall”

Diagnosis: Quadriceps tendon tear.
Quadriceps tendon tear

History: “Osteosarcoma of femur”
3. Provide imaging information to direct management and treatment.

- Diagnosis or differential diagnosis
- Size, location, involvement, extent
- Surgical mapping
- Changes from prior studies
 - Stable, growth, shrinkage, necrosis, recurrence, healing
- Complications

Quality Image Production

- Signal to noise ratio
- Image contrast
- Spatial resolution
- Coverage
Signal to Noise

- More signal (and less noise) is better
 - Better perceive low contrast objects.
 - Better perceive smaller objects.

100% noise
SNR affects our ability to perceive low contrast structures.

SNR affects our ability to see small objects.
 - High spatial resolution does not guarantee visibility.

Take home?

- SNR affects our ability to perceive low contrast structures.
- SNR affects our ability to see small objects.
 - High spatial resolution does not guarantee visibility.

Increasing SNR

- Increase magnetic field strength.
Increasing SNR

1.5 T 3 T

Smaller or better coil

Coil Selection

signal \propto r^3

head (30 cm d) knee (18 cm d)
Signal to Noise

- Increase SNR
 - Increase Field strength
 - Use better coil

- No time or spatial resolution penalty

Importance of Bandwidth

Narrow Setting

\[
\text{SNR} \propto \frac{1}{\sqrt{\text{BW}}}
\]
Importance of Bandwidth

<table>
<thead>
<tr>
<th>COR PD Fatsat, 1.5T</th>
<th>BW=780 Hz/pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>COR PD Fatsat, 1.5T</td>
<td>BW=80 Hz/pixel</td>
</tr>
</tbody>
</table>

Narrower Bandwidth
- Increased chemical shift artifact
- Chemical shift α Tesla
 - ~ twice chemical shift at 1.5T than 0.7T, 4 X at 3.0T
- Workaround
 - Swap phase and frequency encoding directions
 - Get rid of the fat signal!
 - chemical saturation (fatsat)
 - STIR

Pulse sequences and techniques
- Anatomy sequences
 - T1, PD
- Pathology sequences
 - T2, T2 FS, IR/STIR, post contrast
- 3 planes
 - Axial, coronal, sagittal
Sequence Use

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Bone marrow, tumor imaging</td>
</tr>
<tr>
<td>T1 fatsat</td>
<td></td>
</tr>
<tr>
<td>PD</td>
<td></td>
</tr>
<tr>
<td>PD fatsat</td>
<td></td>
</tr>
<tr>
<td>T2 / T2 fatsat</td>
<td></td>
</tr>
<tr>
<td>STIR/Mod IR</td>
<td></td>
</tr>
<tr>
<td>Gradient</td>
<td></td>
</tr>
</tbody>
</table>

Tumor Imaging

Neurovascular Bundle
Solid!

Abscess!

MR Arthrography

Normal hip labrum

Torn hip labrum
<table>
<thead>
<tr>
<th>Sequence Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
</tr>
<tr>
<td>Bone marrow, tumor imaging</td>
</tr>
<tr>
<td>T1 fatsat</td>
</tr>
<tr>
<td>Post contrast imaging</td>
</tr>
<tr>
<td>PD</td>
</tr>
<tr>
<td>Anatomy, menisci, ligaments, tendons</td>
</tr>
<tr>
<td>PD fatsat</td>
</tr>
<tr>
<td>T2 / T2 fatsat</td>
</tr>
<tr>
<td>STIR / Mod IR</td>
</tr>
<tr>
<td>Gradient</td>
</tr>
</tbody>
</table>

Case 2

Tear!

Case 3

Tear!
Shoulder Labrum

![Image of shoulder labrum MRI]

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Bone marrow, tumor imaging</td>
</tr>
<tr>
<td>T1 fatsat</td>
<td>Post contrast imaging</td>
</tr>
<tr>
<td>PD</td>
<td>Anatomy, menisci, ligaments, tendons</td>
</tr>
<tr>
<td>PD fatsat</td>
<td>Anatomy, cartilage, labrum, edema, cysts</td>
</tr>
<tr>
<td>T2 / T2 fatsat</td>
<td>Cartilage surfaces, marrow (FS), masses</td>
</tr>
<tr>
<td>STIR/ Mod IR</td>
<td></td>
</tr>
<tr>
<td>Gradient</td>
<td></td>
</tr>
<tr>
<td>Sequence</td>
<td>Use</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>T1</td>
<td>Bone marrow, tumor imaging</td>
</tr>
<tr>
<td>T1 fatsat</td>
<td>Post contrast imaging</td>
</tr>
<tr>
<td>PD</td>
<td>Anatomy, menisci, ligaments, tendons</td>
</tr>
<tr>
<td>PD fatsat</td>
<td>Anatomy, cartilage, labrum, edema, cysts</td>
</tr>
<tr>
<td>T2 / T2 fatsat</td>
<td>Cartilage surfaces, marrow (FS), masses</td>
</tr>
<tr>
<td>STIR/ Mod IR</td>
<td>Edema, fluid</td>
</tr>
<tr>
<td>Gradient</td>
<td>Cartilage, susceptibility artifacts</td>
</tr>
</tbody>
</table>
81 y/o f, right hip prosthesis

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Bone marrow, tumor imaging</td>
</tr>
<tr>
<td>T1 fatsat</td>
<td>Post contrast imaging</td>
</tr>
<tr>
<td>PD</td>
<td>Anatomy, menisci, ligaments, tendons</td>
</tr>
<tr>
<td>PD fatsat</td>
<td>Anatomy, cartilage, labrum, edema, cysts</td>
</tr>
<tr>
<td>T2 / T2 fatsat</td>
<td>Cartilage surfaces, marrow (FS), masses</td>
</tr>
<tr>
<td>STIR</td>
<td>Edema, fluid</td>
</tr>
<tr>
<td>Mod IR</td>
<td>Anatomy & edema, fluid</td>
</tr>
<tr>
<td>Gradient</td>
<td>Cartilage, susceptibility artifacts</td>
</tr>
</tbody>
</table>

Gradient echo
Magnetic Susceptibility

- “Blooming” artifact
- Worst with gradient echo sequences
- Increased with higher field strengths
- In MSK
 - Metal
 - Trabecular bone
- Foe or friend?

Magnetic Susceptibility

Post-surgical change
“blooming” artifact

1.5 T

2D FLASH: TE=19, 20 flip

Black trabeculae, dephasing secondary to susceptibility.

Metastatic focus, destroyed trabeculae, increased specificity.

56 y/o F with left shoulder pain and lung cancer
Common problems

- **Metal/hardware**
- **Coil selection/positioning**
- **Patient positioning**
 - Coverage
 - FOV
 - Wrap
 - Frequency and phase directions
 - Motion

Artifact Depends on Hardware Composition

Susceptibility of metals

Bad Metals
- Stainless steel
 - Large artifacts
 - Plates, screws
- Cobalt chrome
 - Moderate artifacts
 - Older hips
 - Bipolar hips
 - Knees

Good Metals
- Titanium
 - Minimal artifacts
 - Newer hips
 - IM nails
- Oxidized Zirconium
 - Oxinium
 - Modest artifacts
 - Knees
Metal and MRI Sequences

Bad Sequences
- Gradient echo
- Fatsat anything (spin echo)

Good Sequences
- Fast spin echo (FSE)
- STIR (FSE IR)

Optimal Scanning
- Metal friendly pulse sequence
- Longer echo train
- Wide bandwidth
- High matrix
- Frequency encode axis away from the ROI
Good position of coil

Poor coil Positioning

Correct knee orientation
Correct knee orientation

MEDIAL OR LATERAL???
Phase and frequency

What did we learn?

- Reviewed imaging goals for MSK MRI.
- Discussed quality image production.
- Highlighted value of different pulse sequences.
- Elevated awareness of common MSK imaging problems.