Endocrinology: Chapter 11

Endocrine System Function
• Major control and communication system
• Controls…
 – body fluid composition and volume
 – nutrient levels
 – growth and development
 – reproduction
 – physiological cycles (“biological clocks”)

Nervous vs. Endocrine Control
• The nervous system controls rapid, precise responses (ex. reflex)
• The endocrine system controls activities that require long duration (ex. body growth)
 – energetically more efficient
• Specific actions of chemical messengers are at the level of the target cell
• These two systems interact and regulate each other

The Endocrine System
• Endocrine glands
 – Lack ducts
 – Secrete products into the interstitial fluid
• Endocrine organs may be solely endocrine or multifunctional

Major Endocrine Organs
• Pituitary and Hypothalamus
• Adrenal glands (2)
• Thyroid
• Parathyroid glands (4)
• Pancreas
• Ovaries, Testes

Additional Endocrine Organs

Table 11.1
Hormones

Chemicals that are broadcast throughout the body which induce physiological changes in specific target cells.

Hormone Classes

- **Amines**
 - hormones derived from tyrosine and tryptophan
 - adrenal medulla hormones, thyroid hormones, pineal gland hormones
- **Peptide Hormones**
 - made from polypeptide chains
 - most hormones (insulin, FSH)
- **Steroids**
 - derivatives of cholesterol
 - adrenal cortex hormones, gonadal hormones

Mechanism of Action: Hormones

- **Steroids & Thyroid Hormones**
 - nonpolar
 - pass directly through the cell membrane
 - bind to protein receptor in cytoplasm or in nucleus
 - protein binds to gene on DNA in the nucleus
 - stimulates expression of that gene (protein production)

- **Peptides and Most Amines**
 - polar
 - cannot pass through hydrophobic lipid bilayer
 - bind to receptor proteins on cell surface
 - activation of membrane-bound enzymes
 - production of a second messenger inside the cell
 - e.g. cAMP
 - 2nd messenger activates or deactivates various enzymes

Hormonal Regulatory Mechanisms

- **Regulating hormone levels**
 - e.g. Negative feedback
 - Change causes change in opposite direction
 - e.g. thyroxine/TSH
- **Regulating tissue response**
 - e.g. down regulation
 - Decrease # of receptors on target cell with chronically elevated hormone levels

Hypothalamus-Pituitary Axis

- **Hypothalamus**
 - part of the diencephalon
 - controls release of pituitary hormones
 - Neural control of endocrine function
- **Pituitary gland**
 - extends from the inferior surface of the hypothalamus
 - Two distinctive lobes (posterior and anterior)
 - Linked to hypothalamus by infundibulum
Posterior Pituitary

- Composed of nervous tissue
- Neurosecretory cells produce two peptide hormones
- Released when neurons undergo an AP

Posterior Pituitary Hormones

- **ADH (Anti-Diuretic Hormone)**
 - Increases reabsorption of H2O by kidneys
 - Induces vasoconstriction in arterioles - ↑ BP
 - Stim. by H2O deficit, ↓ BP
- **Oxytocin**
 - Uterine contraction during childbirth
 - Milk letdown during breastfeeding
 - Male function unclear (↑ occurs during ejaculation)

Anterior Pituitary

- Composed of epithelial cells
- Different cell types secrete one of six peptide hormones

Anterior Pituitary Hormones

- **TSH (Thyroid Stimulating Hormone)**
 - Synthesis/release of thyroid hormones
 - Thyroid growth
- **ACTH (Adrenocorticotrophin)**
 - Activates adrenal cortex to release glucocorticoids
- **GH (Growth Hormone, or Somatotropin)**
 - Stimulates secretion of growth factors from various tissues
 - GF’s stimulate growth, protein synthesis, fat breakdown and ↑ blood glucose levels
- **PRL (Prolactin)**
 - Breast development and milk production during pregnancy
 - Modulatory roles in male reproduction and ion balance

Anterior Pituitary Hormones

- **LH (Luteinizing Hormone)**
 - Females
 - Ovulation, regulation of female sex hormones
 - Induces corpus luteum formation after ovulation
 - Males
 - Regulation of male sex hormones (androgens)
Anterior Pituitary Hormones

- **FSH** (Follicle Stimulating Hormone)
 - Females: regulates female sex hormones, egg development
 - Males: induces local mediator secretion from Sertoli cells that trigger sperm development

Hypothalamal Control of the Anterior Pituitary

- Hypothalamic neurons produce releasing/inhibiting hormones
 - Stimulate or inhibit secretion of hormones from the anterior pituitary
- Released into Hypothalamo-hypophyseal portal blood vessels

Hypothalamal Regulatory Hormones

- **TRH** (thyrotrophin-releasing hormone)
 - stimulates TSH release
- **CRH** (corticotrophin-releasing hormone)
 - stimulates ACTH release
- **GHRH** (growth hormone releasing hormone)
 - stimulates GH release
- **Somatostatin**
 - inhibits GH release
- **PHI** (prolactin inhibiting hormone)
 - inhibits prolactin release
- **GnRH** (gonadotrophin-releasing hormone)
 - stimulates FSH and LH release

Adrenal Gland

- Located above each kidney
- Releases hormones in response to stress
- Medulla hormones (amines)
 - Epinephrine & Norepinephrine
 - similar to effects of sympathetic NS (“flight or fight”)

Adrenal Gland

- Cortex hormones (steroids)
 - glucocorticoids (blood glucose)
 - **Cortisol** – elevates blood glucose and fatty acid levels, inflammation suppression
 - mineralocorticoids (salt)
 - **Aldosterone** – increases K+ secretion and Na+ uptake by kidneys
 - androgens
 - (**DHEA** – secondary sex character development, sexual behavior

Glucocorticoid Regulation

- **Cortisol** - helps body cope with stress
 - Hypothalamus releases CRH
 - Stimulates ACTH from anterior pituitary
 - Stimulates cortisol release from adrenal gland
 - Cortisol inhibits CRH release and desensitizes ant. pit. to its effects
Thyroid Gland

- Produces two groups of hormones
 - **Thyroid hormones (amines)**
 - Thyroxine (T₄) and triiodothyronine (T₃) - Increase metabolic rate and body heat production
 - **Calcitonin (peptide)**
 - Increases bone matrix formation and Ca²⁺ secretion from kidneys
 - Reduces blood Ca²⁺ levels

Thyroxine Regulation

- Secretion regulated by the hypothalamus-pituitary axis
 - Hypothalamus releases TRH
 - TRH stimulates anterior pituitary to release TSH
 - TSH stimulates thyroid to secrete T₄
- Negative feedback of T₄ onto anterior pituitary
 - ↑T₄ ↓TSH release

Thyroid Abnormalities: Hyperthyroidism

- Grave’s Disease
 - Production of thyroid stimulating immunoglobulin
 - Mimics TSH function, not subject to negative feedback regulation
 - Overproduction of thyroid hormones
 - Symptoms
 - ↑BMR = ↓body weight, ↑body temp
 - Hyperexcitability of nervous system
 - Restless behavior, ↑HR, etc.
 - Exophthalmos - bulging eyes

Thyroid Abnormalities: Hypothyroidism

- General symptoms
 - Decreased BMR
 - ↓Body temperature
 - ↑Weight gain
 - ↓Alertness (impaired CNS function)
 - Easily fatigued

Thyroid Abnormalities: Hypothyroidism

- Cretinism
 - Low TH production during infancy
 - Reduced growth rate (dwarfism)
 - Severe mental retardation

Thyroid Abnormalities: Hypothyroidism

- Goiter Formation
 - Reduced thyroid hormone production due to iodine deficiency
 - ↑TSH production
 - Abnormal thyroid growth
Parathyroid Glands

- Four small organs located on posterior surface of the thyroid
- Secrete parathyroid hormone (PTH)
 - promotes bone matrix breakdown
 - Reduces Ca\(^{2+}\) secretion in the kidneys
 - Elevates Ca\(^{2+}\) in blood

Pancreas

- Both an endocrine organ and digestive organ
- Endocrine cells located in Islets of Langerhans
- Contain 2 cell types
 - α cells - secrete glucagon
 - β cells - secrete insulin
- Important in regulating glucose levels of the blood

Insulin

- Induces glucose uptake and utilization by cells (esp. muscle and liver)
- Lowers blood glucose levels
 - promotes removal of glucose from blood
- Promotes formation of glycogen
 - polymer of glucose for storage
- Promotes conversion of glucose into fat in adipose tissue
- Stimulates amino acid uptake by cells and protein formation

Insulin Regulation

- Blood glucose level is the major factor controlling insulin and glucagon secretion
 - ↑ glucose → ↑ insulin → ↓ glucose
 - ↓ glucose → ↓ insulin → ↑ glucose
- Maintenance of blood glucose at homeostatic levels via negative feedback

Glucagon

- Secreted when blood glucose levels are VERY LOW
- Increase in blood glucose:
 - Activates liver enzymes to convert glycogen into glucose
- Stimulates breakdown of stored fat and release of fatty acids into blood
 - used as secondary energy source
- Opposes the actions of insulin

Diabetes Mellitus

- Insulin deficiency or excessive tolerance
 - cells do not take up glucose
 - results in excess glucose in blood (hyperglycemia)
- Problems
 - dehydration
 - lose excessive water from urination
 - blood volume/pressure problems
 - starvation - body cannot use glucose
 - break down of fats, formation of ketone bodies
 - metabolic acidosis
Diabetes Mellitus

Two types:
• Type-I (Insulin-dependent, juvenile-onset)
 – Degeneration of β-cells
 – no endogenous insulin
 – Must give exogenous insulin
• Type-II (non-insulin dependent, adult-onset)
 – Cells desensitized (tolerant) of diabetes
 – Often due to obesity
 – controlled by regulating dietary glucose

Hypoglycemia

• Overproduction of insulin or hypersensitivity
• Reactive hypoglycemia
 – β-cells overproduce insulin in response to increased glucose levels
 – too much glucose driven into cells from blood
 • depressed brain function