Muscle Physiology

Chapter 12

Muscle Tissue

- Specially designed to contract
- Generates mechanical force
- Functions
 - locomotion and external movements
 - internal movement (circulation, digestion)
 - heat generation

Types of Muscle

- Skeletal - attached to skeleton
- Smooth - found in walls of hollow visceral organs
- Cardiac - in heart

Skeletal Muscle

- Connected to skeleton via tendons
 - attached to immobile bone at one end (origin)
 - other end attached to more moveable bone (insertion)
- Many muscles are used to bend the skeleton at joints
- Antagonistic pairs
 - Contraction of one does the opposite of its counterpart

Skeletal Muscle Organization

- Muscle fibers (cells)
 - elongate cells, parallel arrangement,
 - bundled by connective tissue
 - multiple nuclei
 - striated
 - sarcolemma - cell membrane
 - sarcoplasmic reticulum (SR)
 - Internal membranous network
 - myofibrils - intracellular contractile elements
 - thick filaments
 - thin filaments

Myofibril Structure

- Composed of sarcomeres
 - smallest functional unit of muscle
 - repeating units of thin and thick protein filaments
 - Thick Filament = Myosin
 - Thin Filament = Actin, Troponin, Tropomyosin
Thick Filament Structure

- Bundles of several hundred myosin molecules
 - intertwining tails + globular heads
- Heads contain:
 - actin binding sites
 - ATP-hydrolyzing sites
- Project outward towards actin
- Form crossbridges
 - bonds with actin
 - Important during contraction

Thin Filament Structure

- Actin
 - primary structural protein
 - spherical protein subunits connected in long, double strand
 - Contains myosin binding site
- Tropomyosin
 - threadlike proteins
 - normally cover myosin binding sites
- Troponin
 - Ca2+ Binding Protein
 - holds tropomyosin in place

Thin Filament Structure

- When Ca2+ binds to troponin
 - Shape of troponin changes
 - Shifts tropomyosin off myosin binding sites
 - Myosin binds to actin

Skeletal Muscle Contraction: Sliding Filament Mechanism

- Movement of thin filaments over thick
 - sarcomere shortening
 - thick filaments are stationary; thin are dragged across thick
 - length of the filaments do not change.

Crossbridge Cycling

- Myosin head binds to actin
- Cross bridge bends (Power Stroke)
 - thin filaments pulled toward center of sarcomere
- Cross bridge link broken
- Cross bridge ‘unbends’ and binds to next actin molecule

Muscle Contraction

- ATP required
 - ATP must bind to myosin for myosin to release actin
- Ca2+ required
 - binding of Ca2+ to troponin uncovers myosin binding sites on the actin
 - Ca2+ released inside the cell to induce contraction
Neural Activation of Muscle Contraction

- Somatic Motor Neurons stimulate AP’s in skeletal muscle cells (neurotransmitter generates EPSPs)
- Excitation-Contraction Coupling
 - Events that link muscle excitation (action potential) to muscle contraction (cross-bridge cycling)
 - Triggers release of Ca\(^{2+}\) into the cytosol of the muscle fiber

Neural Input

- Somatic motor neurons
 - under voluntary and involuntary control
 - controlled by interneurons in motor cortex and cerebellum

Neural Input

- Neuromuscular Junction (NMJ)
 - synapse between motor neuron and muscle fiber
- Presynaptic Terminal
 - enlarged axon terminal
 - contains acetylcholine (ACh)
- Motor End Plate
 - Subsynaptic membrane
 - Chemically-gated Na\(^+\) channels
 - Acetylcholinesterase enzyme
 - breaks down ACh

Sequence of Events

- AP travels down axon to terminal
- Exocytosis of ACh
- ACh diffuses across cleft
- ACh binds to ACh-gated Na\(^+\) channels
- Opens ion channels
- Graded depolarization → AP in sarcolemma of muscle fiber
- AP results in release of Ca\(^{2+}\) inside muscle fiber
- Muscle contracts and shortens

http://www.blackwellpublishing.com/matthews/nmj.html

Excitation-Contraction Coupling

- Sarcoplasmic Reticulum (SR)
 - modified ER
 - surrounds myofibrils
 - stores Ca\(^{2+}\)
- Linked to the sarcolemma by transverse tubules

http://www.blackwellpublishing.com/matthews/myosin.html
Muscle Relaxation

• Ca^{2+} pumped back into the SR by active carrier-mediated transport
 – troponin releases Ca^{2+}
 – tropomyosin covers myosin binding sites on the actin molecules
• Membrane-bound enzyme (acetylcholinesterase)
 – breaks down ACh released at the NMJ

All or None

• Individual muscle fibers respond to a single stimulus in an *all or none* fashion
 – undergo action potential
 – action potential triggers contraction
 – stimulus $<$ threshold $=$ no contraction
 – stimulus \geq threshold $=$ maximal contraction

Motor Units

• Multiple muscle fibers are enervated by a single motor neuron
• Motor Unit
 – motor neuron + all muscle fibers it innervates
 – muscle fibers in a motor unit contract as a single unit

Motor Unit Recruitment

• Individual motor units contract in an all-or-none fashion
• Differences in contractile strength are due to differences in the *number* of contracting motor units
• Motor Unit Recruitment
 – increasing the number of contracting motor units to increase the overall strength of contraction

Motor Units and Control of Movement

• Different regions of the body have different numbers and sizes of motor units
• Leg muscles
 – strong contractions, little precision of movement
 – large motor units (2000 fibers/unit)
 – few individual units
• Finger muscles
 – weaker contractions, more precise movements
 – small motor units (10 fibers/unit)
 – many individual units

Motor Units and Control of Movement

• More motor cortex area allocated to control of areas with more numerous, smaller motor units
• Precise control of the strength of muscle contractions
Energy for Muscle Activity

- Muscle contraction requires ATP
 - cross bridge cycling
 - Ca^{2+} pump activity
- Sources available
 1. cytosolic ATP
 2. creatine phosphate
 3. aerobic respiration
 4. anaerobic respiration

ATP and Creatine Phosphate

- ATP in muscle
 - limited (used up in a few contractions)
- Creatine phosphate
 - storage of high energy phosphate bonds
 - used to quickly regenerate ATP from ADP
 - limited supply in cells

Aerobic Respiration

- Occurs in mitochondria
- Requires O_2 to form ATP
 - fatty acids = primary nutrient source
 - contain lots of energy, but requires O_2 to release it
- O_2 transported in by blood (hemoglobin) and also stored in muscle tissue (myoglobin)
- Aerobic exercise
 - light to moderate exercise (walking, jogging, swimming)
- Maximum oxygen uptake
 - max rate of O_2 delivery to the muscles
 - max level of aerobic activity

Anaerobic Respiration

- Glycolysis + lactate fermentation
 - breakdown of glucose
 - stored as glycogen in muscle cells
 - Does not require O_2
 - generates ATP quickly (faster than aerobic respiration)
- Used during intense exercise
 - anaerobic exercise
 - O_2 supply cannot keep up with demand
- Lactate produced
 - muscle soreness and fatigue

Consequences of Anaerobic Respiration

- Muscle Fatigue
 - inability to maintain tension due to previous contractile activity
 - ATP stores used up
 - ion gradients across membrane disrupted
 - high lactate levels inhibit contractile protein function
- Oxygen Debt
 - increased O_2 consumption (breathing) after exercise
 - restore myoglobin and hemoglobin O_2 content, metabolize lactate, etc.

Changes with Regular Sustained Exercise

- ↑ number and size of mitochondria
- ↑ number of blood capillaries supplying muscle
 - ↑ O_2 and nutrients + more efficient waste removal
- ↑ amt. myoglobin in muscle tissue
- ↑ size of muscle fibers (weight training)
 - ↑ # of myofibrils
 - no change in # of muscle fibers
Smooth Muscle

- visceral organs
- small tapered fibers
- single nuclei
- lack striations
- poorly developed sarcoplasmic reticulum

Smooth Muscle Contraction

- No striations
 - contractile proteins not arranged in sarcomeres
 - arranged in fish-net network
 - allows for extensive contraction, even when stretched

Smooth Muscle Excitation-Contraction Coupling

- Depolarization of sarcolemma opens voltage-gated Ca²⁺ channels
 - can open in response to graded potentials
 - contraction strength is proportional to stimulus strength
- Ca²⁺ enters the cell from the extracellular fluid

Smooth Muscle Excitation-Contraction Coupling

- Ca²⁺ binds with calmodulin in cytoplasm
- Ca²⁺-calmodulin binds to myosin light chain kinase (MLCK)
 - activates MLCK
- MLCK phosphorylates myosin
 - needed for myosin to bind actin
- Cross-bridge cycling