PNS and CNS

Chapters 8 and 9

Nervous System Organization

• Peripheral Nervous System (PNS)
 – connects CNS to sensory receptors, muscles and glands
• Central Nervous System (CNS)
 – control/integrating center
 – brain + spinal cord

Peripheral Nervous System

• Rapid Communication
• Consists of:
 – 12 pairs cranial nerves
 – 31 pairs spinal nerves

Nerves

• axons of many neurons bundled together
• transmit signals between brain or spinal cord and other body regions

Peripheral Nervous System

• Sensory (Afferent)
 – convey impulses from sensory receptors to CNS
 – Afferent (sensory) neurons
• Motor (Efferent)
 – convey impulses away from CNS to periphery
 – Efferent (motor) neurons

Motor Component

• Somatic Nervous System (Voluntary)
 – conduct impulses from CNS to skeletal muscles
• Autonomic Nervous System (Involuntary)
 – convey impulses from CNS to smooth muscle, cardiac muscle and glands
Somatic Nervous System Structure

- Single motor neuron cell leading from the CNS directly to the muscle
- Cell body of motor neurons located in CNS

Autonomic Nervous System Structure

- Two neurons involved in efferent pathway (CNS to effector)
 - 1st (preganglionic) has cell body in CNS
 - synapses with 2nd in the autonomic ganglion
 - 2nd (postganglionic) sends signal from auton. gang. to the effector organ

Sympathetic and Parasympathetic Divisions

- Sympathetic (thoracolumbar)
 - dominates in stressful situations
 - prepares body for activity (‘Fight or Flight’)
 - adrenergic effects (use norepinephrine)
- Parasympathetic (craniosacral)
 - dominates during relaxed situations
 - precise control over the body
 - cholinergic effects (use acetylcholine)

Sympathetic vs. Parasympathetic Effects

<table>
<thead>
<tr>
<th>Organ</th>
<th>Sympathetic</th>
<th>Parasympathetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>increases HR</td>
<td>decreases HR</td>
</tr>
<tr>
<td>Blood vessels to visceral organs</td>
<td>constrict</td>
<td>dilate</td>
</tr>
<tr>
<td>Blood vessels to heart + skeletal muscle</td>
<td>dilate</td>
<td>constrict</td>
</tr>
<tr>
<td>Digestive tract</td>
<td>decreases motility</td>
<td>increases motility</td>
</tr>
</tbody>
</table>

Central Nervous System

- Control and integration
- Consists of
 - brain
 - spinal cord

Spinal Cord

- Links brain and PNS
- Controls some involuntary functions
- Protected by vertebral column
- 31 pairs of spinal nerves
 - Sensory Component
 - Motor Component
Spinal Cord Structure

- Dorsal Root = sensory
 - Dorsal root ganglion = afferent cell bodies
- Ventral Root = motor
 - Roots join to form spinal nerve
- Interneurons
 - White Matter = axons (myelin)
 - found in outer layer
 - Gray Matter = primarily cell bodies, dendrites
 - found in inner layer

Spinal Reflexes

- Spinal cord alone can respond to some stimuli
- Reflex - simple, stereotyped response to a stimulus

Brain

- \(10^{11}\) (100 billion) neurons
- grey matter mostly on outside (cortex)
- four fluid-filled chambers (ventricles)
- composed of sections:
 - Prosencephalon (forebrain)
 - telencephalon (Cerebrum)
 - diencephalon (Hypothalamus and Thalamus)
 - Mesencephalon (midbrain)
 - Rhombencephalon (hindbrain)
 - metencephalon (cerebellum, pons)
 - myelencephalon (medulla oblongata)

Telencephalon (Cerebrum)

- Largest part of brain
 - 80% total brain wt
- Cerebral Hemispheres (L and R)
 - connected by corpus callosum
- Surface = cerebral cortex
 - most of the grey matter of the cerebrum
- Deep folds (sulci) in between convolutions (gyri)

Cerebral Lobes

- Cortex divided into paired lobes
 - Parietal
 - Frontal
 - Temporal
 - Occipital
 - Insula
- Each has distinctive functions
Parietal Lobes

- Perception of somesthetic senses (touch, pressure, heat, cold, pain)
 - Somatosensory cortex - postcentral gyrus of the central fissure
- Understanding language and formulating words
 - Angular gyrus
- Interpretation of textures and shapes

Somatosensory Cortex

- Receives info. from various parts of body
- Each region receives info. from specific body area (somatotopic)
- diff. parts of body are not equally represented
 - hands and face have larger areas dedicated to processing of information
- receives info. from opposite side of body (decussation)

Frontal Lobes

- voluntary movement of skeletal muscle (motor cortex)
- personality
- higher intellectual processes
 - planning, decision making
- verbal communication
 - Broca’s area - motor mechanisms for speech

Motor Cortex

- Precentral gyrus of the central fissure
- Controls voluntary movements of skeletal muscles
- Somatotopic
- More area dedicated to body regions movements requiring precise movements
- Decussation

Temporal and Occipital Lobes

- Temporal Lobe
 - auditory cortex
 - perception and interpretation of auditory info
 - storage of auditory and visual experiences
 - Language comprehension (Wernicke’s area)
- Occipital Lobe
 - processing of visual information
 - visual cortex
 - interpretation of visual images
 - motor activity of eyes
 - correlation of images with previous visual experiences

Insula Lobe

- Located beneath frontal and temporal lobes
- Functions
 - Memory
 - Sensory integration (pain)
 - Cardiopulmonary responses to stress
Internal Grey Matter

- basal nuclei
 - control of voluntary movements
 - inhibition activity for maintaining muscle tone
 - maintaining purposeful motor activity while suppressing unwanted activity
 - monitor/coordinate slow sustained contractions
- Gulf war syndrome – degeneration of basal nuclei

Diencephalon

- Thalamus
 - accepts sensory info. and sends it to cortex.
 - Epithalamus - roof of third ventricle
 - choroid plexus - produces cerebrospinal fluid
 - pineal body - produces melatonin
 (reproduction, circadian rhythms)
- Hypothalamus
 - motivational behavior
 - hunger, thirst, body temperature,
 - neural control of hormonal release from the pituitary gland

Mesencephalon

- Located btw diencephalon and pons
 - corpora quadrigemina, red nucleus, substantia nigra, cerebral peduncles
- visual reflexes
- auditory information relay
- motor coordination
 - links cerebrum and cerebellum
 - Parkinson’s disease
 - degeneration of the substantia nigra
 - motivational (reward) behavior

Metencephalon

- Pons
 - interface for four pairs of cranial nerves
 - control of respiration
- Cerebellum
 - coordination of body movements, posture, balance
 - Damage = jerky movements, difficulty walking

Myelencephalon

- Medulla oblongata
 - control of basal survival functions
 - Cardiac Center
 - regulates HR and contractile force
 - Respiratory Center
 - regulates respiration
 - Vasomotor Center
 - controls blood vessel diameter and blood pressure
Reticular Formation

- Interneurons in medulla, pons, midbrain, thalamus and hypothalamus
- receives and integrates incoming sensory info.
- relays sensory info. to the cerebral cortex
 - nonspecific arousal of cerebrum