Reproduction
Chapter 20

Function
- Not for homeostasis of the individual
 - person can survive indefinitely without a reproductive system
- Continuation of the species
 - continuation of genes beyond the lifespan of a single individual

General Reproductive System Organization
- **Primary Reproductive Organs (Gonads)**
 - Testes (male) and Ovaries (female)
 1. Produce gametes
 - Sperm and Ova
 2. Produce and secrete sex steroid hormones
 - testosterone, estrogen and progesterone
 - responsible for gamete development, development of reproductive tract and secondary sex characteristics

Gametogenesis
- **Gametogenesis**
 - production of gametes
 - Oogenesis (Ova production)
 - Spermatogenesis (Sperm production)
- produced through **meiosis**
 - pairs of homologous chromosomes split among daughter cells
 - 23 chromosomes each

General Reproductive System Organization
- **Secondary Reproductive Organs**
 - reproductive tract
 - tube connecting gametes to external environment
 - accessory sex glands
 - supportive secretions
- **External Genitalia**
 - visible portions of reproductive tract
 - sexual stimulation

Fertilization
- **Fertilization**
 - union of gametes
- Two gametes fuse together
 - combine genetic information of the parents
- Development from single cell to multicellular adult
 - unique combination of genes
Hypothalamic/Pituitary Regulation of Reproduction

- **Gonadotrophins - FSH and LH**
 - secreted by ant. pituitary
- **Influence both male and female reproductive development and function:**
 - stimulate spermatogenesis/oogenesis
 - stimulate gonadal hormone secretion
 - maintain structure of gonads
- **Release induced by GnRH from the hypothalamus**
 - low level secretion during childhood, increases markedly at onset of puberty

Males vs. Females

- **Gamete production**
 - Eggs released intermittently = 1 mature egg/month
 - Mature sperm are produced continuously
- **Sex steroid release**
 - Female hormones have cyclical release
 - Testosterone released continuously
- **Duration of reproductive life**
 - Reproductive capability begins at puberty for both M and F
 - Female reproduction ends during middle age (menopause)
 - Male reproductive potential continues throughout life

Testes

- **Primary reproductive organ**
 - Produce Sperm
 - Produce Testosterone
- **Housed in Scrotum**
 - external to peritoneal cavity
 - low temp. (35 °C) needed for sperm prod.

2. **Sertoli cells**
 - Large cells that line walls of seminiferous tubules
 - Surround and support developing sperm:
 - Provide nourishment
 - Deposit secretions (spermatogenesis)
 - Secrete seminiferous tubule fluid
 - Protect sperm from immune system

3. **Spermatogenic cells**
 - actively differentiate into mature sperm cells
 - 64 days to complete
 - normal male = 30 million/day
Spermatogenesis

- Sperm development and testosterone production under hormonal control
 - LH → Leydig cells → testosterone
 - FSH → Sertoli cells → spermatogenesis

Mature Spermatozoa

- head
 - chromosomes
- tail
 - swimming
- midpiece
 - mitochondria
- acrosome
 - enzyme filled vesicle
 - 'enzymatic drill'

Male Reproductive Tract

- Epididymis
 - storage of mature sperm
- Vas Deferens
 - conduct sperm out of scrotum to urethra
- Ejaculatory Duct
 - merger point of both vas deferens
 - receives glandular secretions
- Urethra
 - common channel for expulsion of semen and urine

Male Accessory Glands

- Produce Seminal Fluid
 - support sperm in female repro. tract
 - provide nutrients and lubricate tubes
 - semen = seminal fluid + sperm
- Seminal Vesicles
 - (60% of semen volume)
 - supply fructose (energy), prostaglandins
 - induce contractions in female repr. tract

Male Accessory Glands

- Prostate Gland
 - produces alkaline fluid
 - neutralizes vaginal acidity
- Bulbourethral Glands
 - Secrete lubricating fluid for sexual intercourse

Penis

- Male copulatory organ
- Consists of erectile tissue
 - spongy tissue with arterioles
 - Constricted when flaccid
 - Dilate for erection
- Contains urethra
- Glans penis (enlarged end)
 - emerges from prepuce (foreskin)
Ovaries

- **Eggs (Ova)**
- **Female Sex Hormones:**
 - *Estrogen* (estradiol 17β)
 - ova maturation and release
 - secondary sex characteristics
 - maintenance and maturation female reprod. tract
 - *Progesterone*
 - secondary sex characteristics
 - promote fertilization of ovum
 - prepare reproductive tract for pregnancy

Secondary Sex Organs

- **Female reproductive tract**
 - oviducts (Fallopian Tubes)
 - Uterus
 - Implantation/gestation
 - Vagina
 - copulation
 - Connected to uterus at the cervix
 - Sperm enters uterus via cervical canal

External Genitalia

- labia majora
- labia minora
- clitoris

Oogenesis

- germ cells (oogonia) arise early in embryonic development
 - 6-7 million by 5th month of gestation
 - production ceases, and most die off
- differentiate into **primary oocytes** near end of gestation
 - contains 46 replicated chromosomes
 - begin meiosis, but halt in initial stages

Ovarian Cycle

- lasts ~28 days
- 2 alternating phases:
 - **Follicular phase** (Day 1-14)
 - 1° follicle develops with FSH stimulation
 - 1° follicle - 1° oocyte w/ single granulosa layer
 - 2° follicle - granulosa layer divides into numerous layers, fluid filled vesicles form
 - mature (Graafian) follicle - vesicles merge to form fluid filled antrum
 - **Luteal phase** (Day 15-28)
 - corpus luteum forms
 - prepares uterine lining for pregnancy

At birth, ovaries contain ~2 million primary oocytes
- gradually lost (400,000 remain at puberty)
- primary oocytes surrounded by single layer of granulosa cells (ovarian follicle)
- One 1° oocyte matures and is released from its follicle each month
 - About 400 total in lifetime, rest degenerate
 - By menopause, few eggs remain
Ovarian Cycle

- **Ovulation** of mature egg
 - Day 14 of ovarian cycle
- **Luteal phase** (Day 14-28)
 - Presence of corpus luteum
 - Prepares reproductive tract for pregnancy

Ovarian Follicle

- Oocyte
- Zona pellucida = gel-like membrane around oocyte
- Granulosa Cells = surround and support oocyte
 - Cells secrete Follicular Fluid into antrum containing estrogen
- Thecal cells = specialized connective tissue cells
 - Secrete testosterone used by granulosa cells to make estrogen

Oogenesis

- Egg completes 1st meiotic division just before ovulation
- Releases 1st polar body to become a 2nd oocyte
- Begins 2nd meiotic division, but then stops
 - Not completed until fertilization

Corpus Luteum Formation

- After egg is released follicle becomes corpus luteum
 - Secretes estrogen and progesterone
 - Build-up of uterus
- If egg is fertilized corpus luteum remain
 - Maintains uterine buildup
- If not, corpus luteum degenerates
 - Onset of new follicular phase

Hormonal Regulation of Ovarian Cycle

- Under control of hypothalamus (GnRH)
 - Stimulates FSH and LH release from ant. pituitary
- 1st follicle begins to develop under stim. by FSH
- As follicle matures, estrogen (estradiol) secretion increases

Hormonal Regulation of Ovarian Cycle

- As estrogen increases, positive feedback on the ant. pit. (stim LH prod)
- LH surge
 - Rapid increase in LH release on Day 13
- Follicle ruptures and releases the egg
 - Ovulation
Hormonal Regulation of Ovarian Cycle

- Cells of ruptured follicle form the Corpus Luteum
 - secretes Estrogen and Progesterone
 - help prepare uterus for a fertilized egg
 - progesterone inhibits FSH and LH = no new follicles mature

- If egg is fertilized…
 - corpus luteum is maintained
 - halts development and release of a 2nd egg
- If egg is not fertilized…
 - corpus luteum degenerates within 2 weeks

Uterine (Menstrual) Cycle

- E and P induce cyclical buildup and breakdown of uterine lining
 - preparation for pregnancy
 - on average occurs every 28 days in women
- Uterus consists of 3 layers:
 - Perimetrium = outer layer of connective tissue
 - Myometrium = smooth muscle
 - Endometrium = lining with many blood vessels, glands

- Proliferative phase
 - estrogen induced
 - starts buildup of endometrium while follicle matures
 - corresponds with later part of Follicular Phase (Days 5-14)
 - lasts ~ 10 days

- Secretory phase
 - progesterone induced
 - Completes buildup
 - Increases # blood vessels and secretory glands
 - engorged with glycogen for embryonic support
 - Corresponds to Luteal Phase (Day 14-28)

- Menstrual phase
 - due to ↓ progesterone as corpus luteum degenerates
 - discharge of blood and endometrial debris
 - Fall in P, release uterine prostaglandin
 - vasoconstriction and contraction
 - corresponds with early Follicular Phase (Days 1-5)
Fertilization
• Occurs in oviduct
 – of millions of sperm, only a few hundred reach oviduct
• sperm head entry triggers change in zona pellucida
 – prevents other sperm from entering
• ovum completes 2nd meiotic division
 – ejects 2nd polar body.
• sperm and egg nuclei fuse → zygote

Early Development
• zygote begins mitotic cell divisions (cleavage) 30-36 hr after fertilization
• Forms blastocyst by Day 6 (hollow ball of cells)
 – inner layer = inner cell mass (embryo)
 – outer layer = chorion
 • consists of trophoblast cells

Implantation
• zygote enters uterus 3 days after fertilization
• blastocyst implants in endometrium on Day 6
• blastocyst begins cell differentiation
 – Embryo
 – Fetus (8+ weeks)

Implantation
• chorion of implanted embryo secretes Human Chorionic Gonadotropin (hCG)
• prevents degeneration of the corpus luteum through 3rd month of pregnancy
 – maintains E and P production, thus endometrium

Placenta
• develops from adjacent chorionic and endometrial tissue
• allows exchange between maternal and fetal blood
• performs functions urinary, digestive, respir. systems
• Hormonal production

Other Extraembryonic Membranes
• Amniotic sac
 – fluid filled cavity (amniotic fluid)
 – Protects embryo
• Chorion
 – outer membrane
Childbirth

- Hormonally driven
- Oxytocin
 - peptide hormone from hypothalamus, stored in posterior pituitary
 - induces strong uterine contractions → expulsion of fetus
 - affected by estrogen and progesterone secretion
 - estrogen stimulates oxytocin secretion and ↑ oxytocin receptors on myometrial cells
 - progesterone reduces sensitivity of uterus to estrogen, oxytocin and prostaglandins

At term, estrogen levels ↑
 - placenta converts fetal adrenal androgens into estrogen
 - labor begins when oxytocin reaches critical level
 - Stages of labor
 - Cervical dilation (10 cm)
 - head of fetus pushes on cervix
 - Fetal Expulsion
 - Placental Expulsion