Sensory Physiology
Chapter 10

Sensory Organs (Receptors)
- Monitor the internal and external environment
- Transmit peripheral signals to CNS for processing
- Critical for homeostasis

Types of Sensors
Structural Design
- Primary Sensors
 - Dendritic endings of sensory neurons
 - Stimulation directly evokes APs in neuron
- Secondary Sensors
 - Specialized sensory cell
 - Stimulation of sensor induces release of neurotransmitter to sensory neuron.

Types of Sensory Receptors
Functional Types
- Chemoreceptors
 - Respond to changes in chemical concentration
- Mechanoreceptors
 - Respond to mechanical energy (touch, pressure, vibration)
- Photoreceptors
 - Respond to light
- Thermoreceptors
 - Respond to temperature changes
- Nociceptors
 - Respond to tissue damage (pain)

Sensory Adaptation
- Response of sensors to constant stimulation
- Phasic receptors
 - Exhibit sensory adaptation
 - Firing rate of receptor (θ AP’s) decreases with constant stimulus
- Tonic receptors
 - Exhibit little adaptation
 - Maintain constant firing rate as long as stimulus is applied

Four Steps to Sensation
1. Stimulation
 - Application of stimulus
 - Must be strong enough to induce AP in sensory neuron
 - Sensors most sensitive to one particular stimulus modality (adequate stimulus)
2. Transduction
 - Induction of an action potential
 - Stimulation of sensor induces graded potentials in sensors
 - Generates potentials, or receptor potentials
 - If strong enough depolarization, AP results
 - ↑ stimulus strength above threshold
 → ↑ AP firing rate
Four Steps to Sensation

3. Conduction
 - relay of information through a sensory pathway to specific region of CNS
 - Usually three neurons in sensory pathway
 - 1st order neuron
 - from stimulation point to CNS
 - 2nd order neuron
 - e.g., from entry into CNS to thalamus
 - 3rd order neuron
 - e.g., from thalamus to perception site
4. Perception
 - Detection of environmental change by CNS
 - Evaluation of nature of change and magnitude

Acuity

- Acuity = ability to discriminate size, shape of an object in the environment
- Determined by size of receptive field
 - area of the body that, if stimulated, will cause a response from a sensory neuron
- ↑ receptor density, ↓ receptive field size, ↑ acuity
 - easier to define borders of an object

Classification of Sensory Input

- Somatesthetic senses
 - sensors located over wide areas of the body
 - Information usually conducted to the spinal cord first (then possibly the brain)
- Special Senses
 - Changes detected only by specialized sense organs in the head
 - Information conducted directly to the brain

Somatesthetic Senses

- Touch and Pressure
- Heat and Cold
- Limb movements
- Pain

Somatosensory Information Conduction

- Two possible destinations for sensory information upon entering the spinal cord:
 - Part of spinal reflex arc
 - Relayed up ascending to somatosensory cortex

Somatesthetic Senses: Sensor Structure

- Free nerve endings
 - heat, cold, pain
- Expanded dendritic endings
 - Ruffini endings and Merkel's disks (touch)
- Encapsulated endings
 - Meissner's corpuscles, Krause's corpuscles, Pacinian corpuscles (touch and pressure)
- Bundled receptors
 - Spindle fibers, Golgi tendon organs
Special Senses
- Taste
- Smell
- Hearing
- Equilibrium
- Vision

Taste (Gustation)
- Detection of chemical concentrations in the oral cavity
- Taste buds - chemoreceptors
 - contain microvilli that project to the external surface
 - When chemicals come into contact with these hairs, buds release NT to sensory neurons → APs
- Travel to the parietal lobe (inferior postcentral gyrus)

Taste (Gustation)
- Different tastes derived from activation of different signaling pathways within the cells
 - Salty (high [Na+])
 - Sour (high [H+])
 - Sweet (organic molecules)
 - Bitter (toxins)
 - Umami (glutamate)

Smell (Olfaction)
- Detection of chemicals in air
- Modified bipolar neurons (chemoreceptors)
 - Ciliated receptors located in nasal epithelium
 - respond to chemicals in air
- APs travel to olfactory bulb
 - Synapse with mitral cells (2nd order) in glomeruli
 - Each glomerulus receives signals from one type of receptor
- Info Relayed to olfactory cortex (temporal lobe) and medial limbic system

Smell (Olfaction)
- Defines much of food flavor
- ~1000 different genes for olfactory receptor proteins
 - Humans can distinguish among a great variety of odors (10,000)
 - Combinatory effect of odorants binding to different receptors

Hearing
- Neural perception of vibrations in the air
- Hair cells - mechanoreceptors
 - vibrations bend stereocilia
 - Opens/closes physically gated ion channels
 - alters release of NT to sensory neurons
Anatomy of the Ear

- Outer Ear - air-filled
- Middle Ear - air-filled
- Inner Ear - fluid-filled

Outer (External) Ear

- Pinna (Auricle)
 - collects and channels sound waves
- External Auditory Meatus
 - entrance into the skull
- Tympanic Membrane
 - vibrates when struck by sound waves

Middle Ear

- Air-filled chamber
- Eustachian tube
 - connects middle ear to pharynx
- Auditory ossicles
 act as sound amplifiers
 - malleus - against tympanic membrane
 - incus
 - stapes - linked to oval window

Inner Ear

- Fluid-Filled
- Two regions:
 - Vestibular apparatus
 - equilibrium
 - Cochlea
 - hearing

Cochlea

- Three snail-shaped tubes filled with fluid
 - Outer canals (continuous)
 - scala vestibuli – superior
 - Links to oval window
 - scala tympani – inferior
 - Links to round window
 - inner canal = Cochlear Duct
 - floor - organ of Corti

Organ of Corti

- Hair cells
 - embedded in supporting cells
- Basilar membrane
 - Flexible, vibratory
- Tectorial membrane
 - covers hair cells
 - stereocilia imbedded in membrane
Conduction of Sound

- Fluid pressure waves cause basilar membrane to vibrate
- Hair cells move against tectorial membrane
- Stimulates neurotransmitter release to sensory neurons
 - Auditory nerve
- Signals conducted to auditory cortex (temporal lobe)

Equilibrium

- Changes in position and motion of the head
 - Balance and coordination of body movement
- Hair cells - mechanoreceptors

Vestibular Apparatus

- Fluid-filled compartments in the inner ear
- Semi-circular canals
 - Rotation of the head
- Otolith organs
 - Linear movement of head and orientation relative to gravity
- Sensory information relayed via the vestibular nerve to the cerebellum and medulla

Semicircular Canals

- Fluid-filled circular tubes oriented in three planes
- Bell-shaped ampulla at one end of each canal
 - Contains hair cells covered with gel-like cupula
- Rotation of head in one direction generates inertial pressure in fluid
 - Bends cupula
 - Stimulates hair cells
 - Stimulates vestibular neurons

Otolith Organs

- Two fluid-filled chambers (utricle and saccule)
- Macula – mound of hair cells covered with otolithic membrane
 - Jelly-like membrane
 - Otoliths (CaCO₃ crystals)
- Linear movement or tilting of head causes otolithic membrane to sag
 - Bends hair cells
 - Stimulates vestibular neurons

Vision

- Perception of electromagnetic radiation
 - Narrow portion of the EM spectrum
- Photoreceptors
 - Stimulated by photons of light
 - Contain photopigments
 - Undergo chemical changes in response to light
 - Induces metabolic changes in photoreceptors leading to receptor potentials
Anatomy of the Eye

- Three distinctive layers of tissue
 - Sclera - outer layer
 - Choroid - middle layer
 - Retina - inner layer

Sclera

- “White” of the eye
- Tough connective tissue
 - Protects inner structures
 - Maintains eye shape
- Cornea (anterior portion)
 - transparent: lets light pass into the eye
 - fixed lens (bends light)
 - covers the anterior cavity
 - filled with aqueous humor

Choroid

- Contains blood vessels for the eye
- Specialized structures anteriorly:
 - Iris
 - Ciliary Muscle
 - Lens

Iris

- Thin ring of pigmented muscle in front of lens
 - pupil - opening in muscle
- Muscles alter pupil size, thus amount of light passing
 - Radial muscles - open pupil in dim light (sympathetic)
 - Circular muscles - close pupil in bright light (parasympathetic)

Ciliary Muscles and Lens

- Lens
 - solid but pliable transparent body
 - used to focus light on the retina
- Ciliary Muscle
 - ring-shaped smooth muscle
 - linked to lens by suspensory ligaments
 - adjusts shape of lens to focus light

Accommodation

- Changing lens shape to focus light from objects at different distances on the retina
- Far objects
 - light from narrow range of angles
 - ciliary muscles relax, lens stretched
 - less convex, less bending of light
- Near objects
 - light from wide range of angles
 - ciliary muscles contract, lens recoils
 - more convex, more bending of light
Refraction of Light

- Light bends when passing between mediums with different densities
- Four different refractive mediums in the eye:
 - cornea
 - aqueous humor
 - lens
 - vitreous humor (btw lens and retina)
- Bending of light leads to projection on the retina
 - Lens is responsible for focusing the image

Retina

- Inner layer of the eye
- Contains photoreceptors
 - rods and cones
- Fovea centralis
 - Point where light is focused
 - High density of cones
- Optic disk
 - Where optic nerve joins the eye
 - No photoreceptors - “blind spot”

Retina Cells

- Photoreceptors
 - Deepest layer
 - Rods and cones
- Bipolar cells
 - Modified neurons
 - Receive signals from cells
 - Transfer signals to ganglion cells
- Ganglion cells
 - Sensory neurons
 - Conduct signals to CNS via the optic nerve

Photoreceptors

- Rods - Light intensity
 - More numerous than cones
 - Highly sensitive to light
 - Low light levels detected
 - Low visual acuity
- Cones - Color
 - Less sensitive to light
 - Need high light levels to respond
 - High visual acuity

Phototransduction

- Each photoreceptor has two segments
- Inner segment
 - Metabolic machinery
 - Synaptic endings
- Outer segment
 - Contains layers of internal membranes containing photopigments
 - Rhodopsin - Rod cells
 - Photopsins - Cone cells
- Photoreceptors synapse with bipolar cells
- Bipolar cells synapse with ganglion cells
- In absence of light, photoreceptors release inhibitory NT
 - Hyperpolarize bipolar cells
 - Inhibit bipolar cells from releasing excitatory NT to ganglion cells
Phototransduction

- when stimulated with light, photoreceptors STOP releasing inhibitory NT
 - bipolar cells **depolarize**
 - release **excitatory NT** to ganglion cells
 - ganglion cells undergo APs

Conduction of Light

- Cornea and aqueous body
- Pupil - adjust light level
- Lens - focus light
- Vitreous body
- Retina (fovea centralis)

Transduction of Light

- Rods and Cones cease release of inhibitory NT
- bipolar cells depolarize
 - release excitatory NT
- Ganglion cells depolarize
 - AP in optic nerve
- Signal conducted to visual cortex in occipital lobe