Hormones

Chapter 12

Endocrine System Function

• Major control and communication system
• Controls activities that require long duration
 – digestion and energy metabolism
 – osmoregulation, water balance, ion balance and
 excretion
 – growth and development
 – reproduction

Endocrine Systems

• Invertebrates
 – Most hormones arise from neurosecretory
 cells in CNS
 – Hormones typically released directly to
 target tissues
 – Principally involved in regeneration, growth,
 development, and reproduction
 – Little homeostatic function

• Vertebrates
 – Much greater prevalence of non-neural
 endocrine glands
 – More complex control pathways
 • One hormone stimulates the release of another.
 – Greater involvement in homeostasis

Hormones

• Chemical signals broadcast to other cells
• Endocrine
 – signals circulated throughout the body
• Paracrine
 – signals broadcast locally within tissues
• Autocrine
 – Signals act directly on the cell that releases it

Hormone Classes

• Amines
 – hormones derived from tyrosine and tryptophan
 – adrenal medulla hormones, thyroid hormones, pineal gland hormones
• Peptide Hormones
 – made from polypeptide chains
 – most hormones (insulin, FSH)
• Steroids
 – derivatives of cholesterol
 – adrenal cortex hormones, gonadal hormones

Figs. 14.1-14.3
Mechanism of Action: Steroids & Thyroid Hormones

- **nonpolar**
 - pass directly through the cell membrane
- bind to protein receptor in cytoplasm or in nucleus
- protein binds to gene on DNA in the nucleus
- stimulates expression of that gene (protein production)

Mechanism of Action: Peptides and Most Amines

- **Polar**
 - cannot pass through hydrophobic lipid bilayer
- bind to receptor proteins on cell surface
 - activation of membrane-bound enzymes
- production of a second messenger inside the cell
 - e.g. cAMP, DAG-IP3
- 2nd messenger activates or deactivates various enzymes

Hormonal Regulatory Mechanisms

- Regulating hormone levels
 - e.g. Negative feedback
 - Change causes change in opposite direction
 - e.g. thyroxine/TSH
- Regulating tissue response
 - e.g. down regulation
 - Decrease # of receptors on target cell with chronically elevated hormone levels

Vertebrate Endocrinology

Hypothalamus-Pituitary Axis

- **Hypothalamus** (brain region)
 - controls release of pituitary hormones
 - Neural control of endocrine function
- **Pituitary gland**
 - Two distinctive lobes (posterior and anterior)
 - Linked to hypothalamus by infidibulum

Posterior Pituitary (Neurohypophysis)

- Composed of neurosecretory cells
- Hormones released when neurons undergo action potentials

Posterior Pituitary Hormones

- **ADH (Anti-Diuretic Hormone)**
 - Arginine vasopressin (mammals) or arginine vasotocin (other verts)
 - increases reabsorption of H2O by kidneys
 - induces vasoconstriction in arterioles - ↑ BP
 - Sexual behavior (amphibians) and oviposition (reptiles and birds)
 - Skin permeability (amphibians)
- **Oxytocin**
 - Uterine contraction during childbirth
 - milk letdown during breast feeding
 - male function unclear (↑ occurs in both sexes during sexual arousal)
Anterior Pituitary (Adenohypophysis)

- Composed of epithelial cells
- Different cell types secrete various peptide hormones
- Secretion controlled by hormonal release from hypothalamus into hypothalamo-hypophyseal portal system

Anterior Pituitary Hormones

- **TSH (Thyroid Stimulating Hormone, Thyrotropin)**
 - Stimulates thyroid gland
 - Release thyroid hormones
 - Stimulates thyroid growth

- **ACTH (Adrenocorticotropin)**
 - Stimulates adrenal cortex to release glucocorticoids

Anterior Pituitary Hormones

- **PRL (Prolactin)**
 - Breast development and milk production during pregnancy
 - Development and maintenance of corpus luteum (non-primate mammals)
 - Crop milk secretion in pigeons, brood patch development in birds
 - Controls sensitivity of testes to LH
 - Enhances uptake / inhibits secretion of ions in fish and amphibians
 - Lots of other modulatory functions

Anterior Pituitary Hormones

- **MSH (Melanocyte Stimulating Hormone)**
 - Integument pigmentation

- **GH (Growth Hormone, Somatotropin)**
 - Stimulates growth, protein synthesis, fat breakdown and ↑ blood glucose levels
 - Functions indirectly through somatomedins (e.g., insulin-like growth factors)

Anterior Pituitary Hormones

- **FSH (Follicle Stimulating Hormone, Follitropin)**
 - regulates female sex hormones, egg development
 - Stimulates Sertoli cells to release local mediators that induce spermatogenesis development

- **LH (Luteinizing Hormone, Lutropin)**
 - ovulation, regulation of female sex hormones
 - induces corpus luteum formation after ovulation
 - Induces secretion of androgens by Leydig cells of testes

“Adrenal” Glands

- Releases hormones in response to stress
 - glucocorticoids (e.g., cortisol)
 - Elevate blood glucose
 - Anti-inflammatory and Immunosuppression
 - mineralocorticoids (e.g., aldosterone)
 - Na+/K+ balance, blood pressure regulation
 - androgens (e.g., DHEA)
 - sexual characteristics
 - epinephrine (“flight vs. fight”)
 - ↑ blood glucose, lipolysis
 - ↑ thermogenesis (shivering and non-)
 - ↑ cardiovascular / respiratory activity
Thyroid Gland (Tetrapods)

- **Thyroid hormones (TH)**
 - **Thyrozone (T₃) and triiodothyronine (T₃)**
 - Increase metabolic rate and body heat production (endotherms)
 - Metamorphosis in amphibians
 - Growth and development

Pancreas

- Endocrine cells located in **Islets of Langerhans**
- Contain two cell types
 - **α** cells - secrete glucagon
 - **β** cells - secrete insulin
- Important in regulating glucose levels of the blood

Insulin

- Induces glucose uptake and utilization by cells (esp. muscle and liver)
- Lowers blood glucose levels
 - promotes removal of glucose from blood
- Promotes formation of glycogen
 - polymer of glucose for storage
- Promotes conversion of glucose into fat in adipose tissue
- Stimulates amino acid uptake by cells and protein formation

Glucagon

- Increase in blood glucose:
 - Activates liver enzymes to convert glycogen into glucose
- Stimulates breakdown of stored fat and release of fatty acids into blood
 - used as secondary energy source

Gonads (Testes and Ovaries)

- Produce steroid hormones
 - androgens (e.g., testosterone)
 - sperm development
 - reproductive tract maturation
 - secondary sex characteristics
 - sexual behavior (M and F)
 - estrogens and progesterone
 - oocytic development
 - reproductive tract development
 - secondary sex characteristics

Comparative Endocrinology: Insect Molting / Metamorphosis

- Development patterns in insects:
 - **Hemimetabolous**
 - go through nympha stages (instars) and slowly transform into adults
 - **Homometabolous**
 - Go through prolonged larval stage, then develop into pupa, then adult
- Development in both occurs through similar endocrine control
Key Hormones

- **Prothoracicotropic Hormone (PTTH)**
 - Peptide hormone secreted by neurosecretory cells brain
 - Stimulates release of ecdysone
- **Ecdysone**
 - Steroid hormone produced by prothoracic gland
 - Stimulates molting and development
- **Juvenile hormone (JH)**
 - Terpenoid hormone produced by corpus allatum
 - Stimulates retention of juvenile characters

Hormone Function: Molting

- Growth of juvenile stimulates PTTH secretion
- Stimulates **ecdysis** (molting)
 - Cuticle detaches from epithelium
 - Muscular contractions pull insect away from cuticle
 - New cuticle forms

Hormone Function: Metamorphosis

- Levels of JH initially high
 - Retains juvenile characters
- Levels begin to fall as larva grows
- When JH falls to below a certain level → pupation
- Continue to fall to during pupation
- At minimum JH production, adult form develops
- JH levels rise in adult
 - Stimulate reproductive development

Additional Important Hormones

- **Eclosion Hormone (EH)**
 - Stimulates inka cells to secrete PETH and ETH
- **Pre-ecdysis Triggering Hormone (PETH)**
 - Coordinates muscle contractions that pull epidermis away from old cuticle
- **Ecdysis Triggering Hormone (ETH)**
 - Coordinates contractions that allow final escape from the old cuticle
- **Bursicon**
 - Tanning/hardening of new cuticle after molting