Food and Fuel

Chapter 4

Why Do Animals Need Food?

• Energy needed to maintain homeostasis
 – Energy to drive otherwise unfavorable chemical reactions
 – Need to maintain order and complexity in a universe that moves towards disorder

• Raw materials needed to assemble and maintain cellular structure and metabolic machinery
 – maintenance, growth, and reproduction

Sources of Energy

• Ultimate sources
 – Sun
 – Inorganic chemicals

• Energy must be in the form of high-energy organic molecules for animals to use it
 – producers
 • plants (capture light energy)
 • chemosynthetic bacteria (oxidize inorganic chemicals)
 – other consumers (animals, fungi, bacteria, protozoans)
 – detritus

Obtaining Food

• Feeding - acquisition and ingestion of food
• Digestion - breakdown of food into simple molecules and release of energy from those molecules
• Nutrition - need for particular types of molecules

Feeding

• Food absorption through body surfaces
• Endocytosis
• Suspension Feeding
• Fluid Feeding
• Seizing of Prey
• Grazing
• Symbiosis with Producer

Absorption Through Body Surfaces

• Protozoans, endoparasites, aquatic invertebrates
• e.g. Tapeworms
 – surrounded by high-nutrient media
 – lack digestive tracts and digestive enzymes
 – absorb nutrients through the integument
• e.g. soft-bodied aquatic invertebrates (polychaetes, echinoderms, bivalves, etc.)
 – absorb amino acids from sea water via active transport
Endocytosis

- Protozoa, radiolarians, alimentary canal cells
 - active engulfing of food particles by cells
 - formation of food vacuoles inside cells
 - merge with lysosomes to digest food.

Suspension Feeding

- Bivalves, sponges, small crustacea, fish, birds, mammals
 - Food items captured out of suspension
 - Often employ mucus to catch small particles
 - Enable “short” food chains

Fluid Feeding

- Piercing and Sucking
 - platyhelminths, nematodes, annelids, arthropods, humming birds
- Cutting and licking
 - biting flies, cyclostomes, vampire bats, vampire finches
- Nursing animals
 - mammals, some birds, some fish

Seizing of Prey

- Limbs
 - arthropods, birds, mammals
- Mouth
 - insect mandibles, fangs, beaks, tongues, pointed teeth
- Toxins (venom)
 - coelenterates, arachnids, insects, snakes

Grazing

- Scraping or cropping food (plants)
- e.g. Gastropods
 - radula
- e.g. Grazing vertebrates
 - bony plates, molars, or continuously growing teeth

Symbiotic Relationships

- Form symbiotic relationship with producer
 - obtain needed energy substrates from the producer
- e.g. photosynthetic bacteria or algae
 - sponges, coelenterates, platyhelminths, bivalves
 - produce sugars, glycerol, etc. for host
- e.g. chemosynthetic bacteria
 - tubeworms from hydrothermal vents
 - located in organs called trophosomes
 - produce ATP via oxidation of H₂S
Digestion

- Food typically consists of protein, carbohydrates and fats
 - very large molecules
 - need to be broken down into subunits
 - amino acids, monosaccharides, fatty acids
- Digestion – breakdown of large, complex molecules/structures into smaller, simpler ones

Digestion

- Mechanical digestion
 - breaking of large clumps of food into smaller ones
 - Teeth, gizzard, stomach
- Chemical digestion
 - Breakdown of complex molecules into simpler molecules

Digestive (Alimentary) Systems

- Internal cavity for intracellular digestion and absorption of nutrients
- Tube-like canal in more advanced organisms

Digestive System Types

- Batch
 - Single opening
 - Food processed in batches
 - enters, is digested, then is expelled
- Continuous flow, stirred-tank
 - Two openings
 - Food continuously enters and is mixed into a homogenous mass
 - Overflow continuously enters remainder of tract
- Plug-flow
 - Iloths of food progressively digested as it moves through tube-like reactor
 - Composition changes with position in the tube

Generalized Alimentary Canal

- Headgut
 - Receiving ingested material
 - Oral cavity, pharynx
- Foregut
 - Conduction, storage and digestion
 - Esophagus and stomach
- Midgut
 - Chemical digestion and nutrient absorption
 - Small intestine
- Hindgut
 - Water and ion absorption, waste storage, defecation
 - Large intestine

Headgut

- Mouth and Pharynx
 - tongue
 - chemosensory organs (taste buds)
 - mechanical digestion and swallowing
 - teeth
 - mechanical digestion (mastication)
 - salivary glands
 - secrete saliva
 - moistens and lubricates food
 - contains enzymes
Foregut

- **Esophagus**
 - conducts food from headgut to stomach
 - movement by peristalsis

- **Crop**
 - Sac-like expansion for storage of food
 - Common in animals that feed infrequently

Foregut

- **Gizzard**
 - Muscular organ for grinding

- **Stomach**
 - Primary site of mechanical and chemical digestion
 - Secretes digestive enzymes and hydrochloric acid
 - Muscular activity mixes food
 - Storage of food

Types of Stomachs

- **Gastric Ceca** (insects, crustaceans)
 - Tube-like outpouchings from foregut
 - Extracellular digestion and phagocytic uptake of nutrients

Types of Stomachs

- **Monogastric stomachs** (most vertebrates)
 - Single, muscular tube or pouch
 - Epithelium secretes gastric juices (enzymes and HCl)

Types of Stomachs

- **Digastric stomachs** (ruminant mammals)
 - Multi-chambered stomachs
 - **Rumen** – large chamber for fermentation of food by microorganisms
 - **Abomasum** – secretes digestive fluids

Midgut

- **Small Intestine**
 - Chemical digestion
 - Nutrient absorption
 - various membrane transport mechanisms
 - Long tube
 - Greatly enhanced surface area
 - Intestinal folds
 - Finger-like villi
 - Microvilli on cells
Hindgut

- **Large intestine and rectum**
 - Absorption of water and ions
 - Storage of waste materials until defecation
 - Hindgut fermentation
 - Microorganisms break down cellulose and other materials
 - Storage in ceca

Digestion of Proteins

- Proteins are polymers of *amino acids*
- Digestion of proteins involves *hydrolysis* of peptide bonds linking amino acids

Digestion of Proteins

- **Endopeptidases**
 - break up proteins from the middle of the chain
 - e.g. *pepsin* - stomach
 - activated by low pH (inert form = *pepsinogen*)
 - cleaves proteins at specific amino acids sequences
 - between acidic amino acid and an aromatic one
 - e.g. *trypsin* - small intestine
 - produced by pancreas (*trypsinogen*)
 - activated by *enterokinase* (small intestine)
 - cleaves proteins at basic amino acids

Digestion of Proteins

- **Exopeptidases**
 - break up proteins from ends of the proteins
 - e.g. *carboxypeptidase* (pancreas)
 - hydrolyzes peptide bonds from the carboxyl end
 - e.g. *aminopeptidase* (small intestine)
 - hydrolyzes peptide bonds from the amino end

Digestion of Fats

- Fats are combinations of alcohols and fatty acids
 - *triglycerides* - glycerol + three fatty acids
 - *waxes* - fatty alcohol + fatty acids
- Digestion involves hydrolysis of fatty acids from the alcohol

Digestion of Fats

- Fats are generally hydrophobic
 - tend to form large droplets in digestive tract
 - need to be emulsified
 - ↓ droplet size and ↑ surface area
- *Bile salts* (liver) - emulsify fats in small intestine
- *Lipase* (pancreas) - hydrolyzes triglyceride into fatty acids, glycerol and monoglycerides
Digestion of Carbohydrates

- Complex carbohydrates (polysaccharides)
 - polymers of simple carbohydrates (monosaccharides)
- Digestion = hydrolysis of glycosidic bonds

Nutrition

- Food needs to contain materials to meet two needs of the animals
 1. *Energy* for external activity and internal maintenance of homeostasis (Calories)
 2. *Raw building materials* for maintenance and growth of body structures

Energy

- Derived from carbohydrates, fats, and proteins via *cellular respiration*
 - *Aerobic respiration*
 - oxygen consuming process
 - *Anaerobic respiration*
 - non-oxygen consuming

Building Blocks

- *Amino acids*
 - Needed for assembly of structural proteins, enzymes, etc.
 - Proteins are constantly being broken down in the body
 - Some amino acids recycled
 - Some amino acids lost

Digestion of Carbohydrates

- Various enzymes (carboxylases) involved in carbohydrate digestion
 - e.g. salivary amylase - breakdown starch (amylose) into maltose
 - e.g. sucrase - breaks down sucrose into glucose and fructose
- Some organisms have *cellulases* to break down cellulose
 - often carried out by symbiotic organisms (e.g. termites, ruminants)

Building Blocks

- *Amino acids*
 - ~20 different amino acids commonly appear in proteins (standard amino acids)
 - Not stored as raw materials pool
 - Many synthesized by body cells
 - Non-essential amino acids
 - Some cannot be synthesized and must be in diet
 - Essential amino acids

Fig 4.4, Table 4.1
Building Blocks

- **Lipids**
 - Construction of cell membranes
 - Formation of hormones, etc.
 - Some essential fatty acids
 - e.g. omega 3 and omega 6 fatty acids
 - Other lipids may be essential
 - e.g. insects cannot synthesize cholesterol

Building Blocks

- **Carbohydrates**
 - Construction of cell membranes
 - Adhesives, lubricants
 - Formation of hormones
 - Structural (e.g., chitin in exoskeletons)
 - No essential carbohydrates (all used can be synthesized)

Building Blocks

- **Vitamins**
 - Coenzymes necessary for various metabolic processes
 - Intermediates for biologically important molecules, etc.
 - Some synthesized by the body, some essential, depending on organism
 - e.g. most organisms can synthesize ascorbic acid, but humans, primates and some bats cannot

Building Blocks

- **Minerals (inorganic ions)**
 - Sulfur – skeletal structure, protein (methionine, cysteine)
 - Phosphorus – nucleic acids, ATP and other phosphorylated compounds, skeleton
 - Sodium – membrane potentials, cotransport
 - Potassium – membrane potentials, cotransport
 - Chloride – membrane potentials,
 - Calcium – skeletal structure, nerve and muscle function
 - Magnesium – nerve and muscle function, dynein function, cofactor of phosphate-related enzymes

Building Blocks

- **Trace Minerals (< 0.01% of body composition)**
 - Iron – cytochromes, hemes, catalase
 - Cobalt (in vitamin B12) – blood formation
 - Copper – hemoglobin formation, hemocyanin, cytochrome oxidase and other enzymes
 - Zinc – enzyme cofactor (e.g. carbonic anhydrase)
 - Manganese – enzyme activating cofactor
 - Molybdenum – enzyme cofactor (xanthine oxidase)
 - Iodine – thyroid hormone constituent