Nuclear physics with a medium–energy EIC
C. Weiss (JLab), POETIC Workshop, Indiana University, Bloomington, 20–Aug–12

- Overview of ep/eA physics with “generic” medium–energy EIC

 $\sqrt{s} = 20–70$ GeV, $L \sim 10^{34}\text{cm}^{-2}\text{s}^{-1}$

- Guiding principles

 Focus on physical system, not formal descriptors:
 “What do we learn about dynamics?”

 Unifying perspective low \leftrightarrow high energies

I) 3D structure of nucleon in QCD
 - Sea quark and gluon polarization
 - Spatial distributions, orbital motion
 - Multiparton correlations

II) Fundamental color fields in nuclei
 - Nuclear quark/gluon densities
 - Shadowing, coherent processes
 - Color transparency

III) Emergence of hadrons from color charge
 - Color neutralization, hadron formation
 - Interaction of color charge with matter
3D nucleon structure: Fields and particles

- Hadrons in QCD
 Relativity: Particle creation/annihilation, space–time picture frame dependent
 Strong interactions: Vacuum structure, non–perturbative effects
 Quantum mechanics: Fluctuations
 Uniquely challenging dynamical system!

- Field–theoretical description
 Imaginary time $t \rightarrow i\tau$, statistical mechanics
 Lattice QCD; analytic methods

- Particle–based description
 Parton picture $P \rightarrow \infty$: Wave function
 Feynman, Gribov: Closed system. Alt: Light–front quantization
 Components with different particle number
 Many–body system: Constituents, interactions, spatial structure, orbital motion, . . .
 High–energy process takes snapshot
 Short–distance interactions: Factorization
3D nucleon structure: Landscape

- **Components probed** predominantly

 - $x > 0.1$ Valence quarks: Source, quantum numbers
 Also gluons at large x!
 Intrinsic sea $s\bar{s}, c\bar{c}$?

 - $x \sim 10^{-1}$ Sea quarks, gluons:
 Quantum numbers
 Generated by non-perturbative QCD interactions!

 - $x < 10^{-2}$ Gluons, singlet sea:
 Radiatively generated
 Saturation at small x: New dyn. scale
 Learn about interactions!

- **Quantities measured**

 Particle number densities, incl. spin/flavor dependence
 PDFs

 Transverse spatial distributions
 GPDs

 Orbital motion, angul. momentum
 TMDs

 Particle correlations
 MP distributions, GPDs

 Densities with operator definition $\langle N | \text{QCD–Op} | N \rangle$
 Calculable with non-perturbative methods
 Scale dependence from RNG equation.
3D nucleon structure: Sea quark polarization

• How are sea quarks polarized in nucleon?

 Non-perturbative QCD interactions connecting valence \leftrightarrow sea quarks

 Role of mesonic degrees of freedom?

• Semi–inclusive scattering: Identify particles produced from struck quark

 Flavor asymmetries poorly constrained by present data
 HERMES SIDIS
 First constraints from RHIC W data

• EIC: Map sea quark distributions and their spin dependence

 High energy ensures independent fragmentation of struck quark
3D nucleon structure: Gluon polarization

- What is the polarized gluon distribution?
 Origin of non-perturbative gluon fields?
 "Constituent quark" structure, quark correlations?

- ∆G(x) presently poorly constrained
 Q^2 dependence of g1(x, Q^2)
 EMC/SMC, SLAC, HERMES, COMPASS, JLab 6/12 GeV

- EIC: Fully quantitative determination
 Good results already with medium energy → Talk Stratmann

- Quark/gluon orbital angular momentum
 Much progress in theoretical understanding
 INT Workshop Feb–12; many recent papers

 Manifest in semi–inclusive spin asymmetries
e.g. Sivers effect → Talk Prokudin

 Challenge to separate OAM in wave function
 from QCD final–state interactions
 → Talk Burkardt

M. Stratmann, INT Workshop 2010
3D nucleon structure: Spatial distributions

- How are quarks/gluons distributed in transverse space?
 - Fundamental size and “shape” of nucleon in QCD
 - Distributions change with x:
 - Diffusion, chiral dynamics
 - Input for saturation models, multiparton interactions in $pp@LHC$

- Exclusive processes $\gamma^* + N \rightarrow J/\psi + N$
 - Gluonic form factor of nucleon:
 - Generalized parton distribution
 - Other channels γ, ρ^0, π, K sensitive to quarks → Talks Hasch, Liuti, Fazio

- EIC: “Gluon imaging” of nucleon
 - Luminosity for low rates, differential measurements
Color fields in nuclei: Physics

- What are the fundamental color fields in nuclei?

 Modification of nucleon structure

 Collective effects $A \neq \sum N$

 Non–nucleonic degrees of freedom

 → QCD origin of NN interaction at different energies
 → Approach to black–disk/saturation regime

- Interaction with high–energy probe

 Transverse resolution $r \sim 1/Q$

 Coherence length $l_{coh} \sim \nu/Q^2 \times \text{factor}$

 Final states: Inclusive, identified spectators, exclusive, . . .
Color fields in nuclei: Landscape

- Fields probed in eA

 $l_{coh} \ll R_A$: Modified nucleon structure, short–range correlations

 JLab 12 GeV: EMC effect for valence quarks
 EMC effect for gluons, antiquarks?

 $l_{coh} \gg R_A$: Collective effects

 New regime accessible with medium–energy EIC!

- QCD phenomena

 Shadowing: QM interference in scattering from multiple nucleons
 Is it different for gluon and quark fields?

 Color transparency: Disappearance of interaction for small probes $\sigma \propto r^2$

 Fundamental prediction of QCD as gauge theory

 Coherent scattering: Quark/gluon fields of entire nucleus Nuclear GPDs, quark/gluon size

 Quantum fluctuations: Diffraction

 Saturation: Strong gluon fields, black disk regime in hard interactions

 New dynamical scale Q_s
Color fields in nuclei: Gluon density

- Nuclear quark/gluon densities
 \(x > 0.1 \) “EMC effect”: Modification of free nucleon structure:
 \(x \sim 0.1 \) Antishadowing: Poorly understood
 \(x \ll 0.1 \) “Shadowing”: QM interference

- Gluon poorly constrained
 \(Q^2 \) dependence of nuclear structure function \(F_{2A}(x, Q^2) \)

- Medium–energy EIC: Precise determination of nuclear quark/gluon densities
 Wide coverage in \(x, Q^2 \)

- Important for understanding approach to saturation at small \(x \)
 Shadowing affects nuclear enhancement of \(Q_s \)
Color fields in nuclei: New probes with EIC

- **Spectator tagging**

 Bound nucleon structure: EMC effect

 Neutron structure from $D(e, e^{'p})X$

 JLab BONUS experiment

 Requires forward p/n detection

- **Coherent nuclear processes** $A(e, e^{'M})A$

 Fundamental quark/gluon radii of light nuclei

 Kowalski, Caldwell 09: Heavy nuclei, very challeging

 Impact parameter dependent shadowing

- **Color transparency in meson production**

 Fundamental prediction of QCD

 Complement to saturation experiments: “Disappearance” at high Q^2
Hadrons from color charge: Fragmentation

• How do hadrons emerge from QCD color charge?

Conversion energy → matter
Cosmic ray physics, early universe

Dynamical mechanisms: QCD radiation, pair creation by soft fields
Vacuum structure, $q\bar{q}$ condensate

• Fragmentation functions from e^+e^-

Many puzzles: $s\bar{s}$, kaons, baryons
Essential input to SIDIS

• EIC: New possibilities

Fragmentation functions from ep:
Favored ↔ unfavored, test universality

Target fragmentation: How does nucleon with “color hole” materialize?
x, spin dependence

Correlations current–target regions:
Multiparton correlations
New field of study: pp at LHC
New possibilities for nucleon structure

Qualitatively new! Many applications! Unique for EIC
Hadrons from color charge: Matter

- How does fast color charge interact with hadronic matter?

 Energy loss, attenuation

 Time scales for color neutralization t_N, hadron formation t_F

 Cold vs. hot matter? $eA/\gamma A \leftrightarrow$ jets in AA

- EIC: Comprehensive studies

 Wide range of energy $\nu = 10 - 100$ GeV:
 Move hadronization inside/outside nucleus, distinguish energy loss and attenuation

 Fixed-target: Correlations $\nu-Q^2$

 Wide range of Q^2: QCD evolution of fragmentation functions and medium effects

 Hadronization of charm, bottom: Clean probes, QCD predictions

 High luminosity: Multidimensional binning

 $\sqrt{s} > 30$ GeV: Study jets and their substructure in eA

[Graphs and diagrams are not transcribed here.]
Summary

- Unique nuclear physics program with medium-energy EIC $\sqrt{s} = 20-70$ GeV

 Three-dimensional structure of nucleon in QCD
 Fundamental color fields in nuclei
 Emergence of hadrons from color charge

 Natural organization . . . could be sharpened further!

- Focus on what we learn about the dynamical system

 Many questions addressed by more than one measurement:
 Orbital angular momentum — inclusive ΔG, semi-inclusive asymmetries;
 Quark correlations — exclusive and semi-inclusive processes

- Qualitatively new probes available in eA

 Spectator tagging, coherent processes: Should be developed further!

 ep better formalized, but eA completely new